
COLLECTING SOLUTION

Marketplace Web Service REST API

Implementation Guide

Document version 2.4.2

Contents

1. HISTORY OF THE DOCUMENT...4

2. MARKETPLACE GLOSSARY... 7

3. PRESENTATION OF THE MARKETPLACE... 8
Commission principle... 8
Calculation of minimum commission.. 8
Submission methods... 9

4. PRESENTATION OF THE WEB SERVICES... 11
4.1. Main payment stages...11
4.2. Web service resources...11
4.3. Prerequisites...12

5. UNDERSTANDING THE MARKETPLACE PAYMENT FLOW.. 13

6. IDENTIFYING YOURSELF DURING DATA EXCHANGE...16

7. UNDERSTANDING MARKETPLACE DATA...17

8. UNDERSTANDING THE RETURN CODES OF THE HTTP STATUS SENT VIA WEB
SERVICE..19

9. VIEWING THE SUB-MERCHANTS REGISTERED ON THE MARKETPLACE......................20

10. USING WEBHOOKS...21
10.1. Defining the webhook address..21
10.2. Accessing the webhooks defined and available on your marketplace.. 22
10.3. Registering, modifying or deleting a webhook...22

10.3.1. Adding a webhook... 22
10.3.2. Modifying a webhook.. 24
10.3.3. Deleting a webhook..24

11. MAKING A PAYMENT...25
11.1. Installment payment.. 29

11.1.1. Regular payments: MULTI.. 30
11.1.2. Custom schedule: MULTI_EXT.. 31

11.2. Payment with capture delay.. 32
11.3. Payment with token creation...33
11.4. Payment by token..34
11.5. Payment initiated by the Merchant... 35
11.6. Manual validation payment... 36
11.7. Payment by voucher.. 40

11.7.1. Prerequisites.. 40
11.7.2. Creating and modifying the order.. 41
11.7.3. Selecting MIDs upon order execution... 42
11.7.4. After the payment...43
11.7.5. Modification and cancellation.. 44

11.8. Payment using a persistent link.. 45
11.8.1. Generating the link... 45
11.8.2. Adjusting the expiration date... 45

12. ANALYZING THE PAYMENT RESULT... 46

13. TOKEN MANAGEMENT..48

13.1. Creating a token.. 48
13.2. Analyzing the result of a token request.. 50
13.3. Updating an alias...51
13.4. Retrieving token details...53

14. PROCESSING THE RETURN TO THE MARKETPLACE.. 54

15. UPDATING AN ORDER...55
15.1. Updating an order paid in installments...56

16. CANCELING AN ORDER...58

17. REFUNDING A PAYMENT..59
17.1. Creating a refund request.. 59
17.2. Following up the refund request... 61
17.3. Modifying a refund request...62
17.4. Canceling a refund request..63

18. MANUALLY TRIGGERING ITEM PAYMENT..64

19. VIEWING MARKETPLACE CASHOUTS..65
19.1. Understanding cashouts... 65
19.2. The cashout process.. 65
19.3. Identifying the cashout and the associated orders.. 66
19.4. List of cashouts... 66
19.5. Cashout details...68

20. GENERATING A CLIENT VIA OPENAPI...69

21. DATA DICTIONARY... 70
21.1. Address object... 70
21.2. Alias object.. 70
21.3. Buyer object...71
21.4. Item object... 71
21.5. Marketplace object.. 73
21.6. Order object... 74
21.7. Order voucher object...75
21.8. Refund object...75
21.9. Seller object... 77
21.10. Shipping object.. 78
21.11. Token object.. 79
21.12. Transaction object..80

22. OBTAINING HELP..84

1. HISTORY OF THE DOCUMENT

Version Author Date Comment

2.4.2 Lyra Collect 11/25/2021 Update of the Accessing the webhooks defined and available on
your marketplace chapter: correction of the request example

2.4.1 Lyra Collect 11/17/2021 Update of the Shipping object chapter: correction of
PACKAGE_DELIVERY_COMPANY

2.4 Lyra Collect 10/6/2021 • Addition of the Using webhooks chapter.

• Update of the Understanding Marketplace data chapter.

2.3 Lyra Collect 5/27/2021 • Addition of the Payment by vouchers chapter and its
subchapters.

• Removal of the Payment with Electronic Meal Vouchers
chapter

• Addition of the Payment using a persistent link chapter and
its sub-chapters.

• Update of the Order object chapter in the data dictionary.

• Addition of the Order voucher object in the data dictionary.

2.2 Lyra Collect 4/13/2021 Clarifications added to the Submission methods chapter.

2.1 Lyra Collect 1/28/2021 • Update of Order object description.

• Update of the Processing the return to the Marketplace
chapter.

• Addition of the mobile SDK support in the Resources of the
web service chapter.

2.0 Lyra Collect 12/21/2020 • Addition of the Understanding Marketplace data chapter.

• Addition of the Understanding cashoutschapter.

• Addition of the The cashout processchapter.

• Addition of the chapter Identifying the cashout and the
associated orders.

• Update of the List of cashouts chapter: clarification in
"capture_label".

1.9 Lyra Collect 11/23/2020 • Update of the Analyzing the payment result chapter.

1.8 Lyra Collect 11/17/2020 • Addition of the Generating a client via OpenAPI chapter.

• Addition of possible values for the auto_code attribute of the
Transaction object.

• Update of the Payment with manual validation chapter.

1.7 Lyra Collect 8/11/2020 • Addition of the Transaction object description.

• Correction of the minimum commission formula.

• Correction of the call URL in the refund example.

1.6 Lyra Collect 6/11/2020 Addition of the Payment with Electronic Meal Vouchers chapter.

1.5 Lyra Collect 5/28/2020 • Addition of order statuses allowing cancellation.

• Update of order statuses allowing refunds.

• Addition of the minimum commission calculation.

• Addition of the Payment initiated by the Merchant chapter.

1.4 Lyra Collect 5/6/2020 • Addition of creating payments in installments.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 4 / 84

Version Author Date Comment
• Addition of updating an order paid in installments.

• Update of commission principle.

• Update of the items resource.

• Update of the Making a payment chapter.

• Correction of the POST ORDER call URL in examples.

1.3 Lyra Collect 7/16/2019 Addition of the Cashouts resource.
Update of the Items, Refunds and Order resources.
Order object: addition of the form_token attribute.
Addition of actions:

• List the cashouts of a marketplace

• Obtain cashout details

• Modifying a refund request

• Canceling a refund request

• Unlock the payment of a previously locked item

Updated chapters:

• Following up the request

• Updating an order

• Presentation of the Web Services

• Main stages of a payment

• Understanding marketplace payment flow

• Making a payment

Addition of chapters:

• Manual triggering of item payment

• Viewing marketplace cashouts

• Modifying a refund request

• Canceling a refund request

• Pre-authorized payments (manual validation)

1.2 Lyra Collect 1/22/2019 Addition of field definition for "order".
Addition of the commission principle.
Addition of Tokens and Refunds resources.
Addition of Tokens and Refunds life cycle.
Addition of the Cancel order action.
Update of the Making a payment chapter:

• Update of code samples.

• Addition of the use of Tokens resource.

Addition of chapters:

• Analyzing the result of a token request.

• Retrieving token details

• Modifying an order

• Payment with capture delay

• Token object

• Alias object

• Refund object

1.1 Lyra Collect 7/12/2018 Details added to chapters: addition of names within objects.
Removal of the transfers resource.
Addition of chapters:

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 5 / 84

Version Author Date Comment
• Viewing the sub-merchants registered on the marketplace

• Refunding a payment

1.0 Lyra Collect 3/12/2015 Initial version

This document and its contents are confidential. It is not legally binding. Any reproduction
and / or distribution of all or part of this document or its content to a third party is strictly
prohibited or subject to prior written authorization from Lyra Collect. All rights reserved.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 6 / 84

2. MARKETPLACE GLOSSARY

Vocabulary Description

Cash-in Payment made by the buyer to the Marketplace (CB, VISA, etc.).

Cash-out Transfer made by the Marketplace to the Sellers.

Marketplace A website offering items from different vendors/service providers.

Order An order is composed of items, corresponds to an order of the marketplace. Each item is
associated with a seller.

Seller A seller on the Marketplace, also called the provider.
Can be a company (holder of a business registration number) or an individual.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 7 / 84

3. PRESENTATION OF THE MARKETPLACE

The payment gateway offers payment services for Marketplaces that sell products or services on the
Internet on behalf of sellers with whom they have signed a commercial agreement to this effect.

The principle of bank flows:

Vocabulary Description

Cash-in Payment made by the buyer to the Marketplace (CB, VISA, etc.).

Cash-out Transfer made by the Marketplace to the Sellers.

The buyers’ payments are distributed between the payment accounts of the sellers. The payment gateway
then triggers credit transfers to the bank accounts of Marketplace sellers.

Commission principle

Commission is the percentage of the order amount withdrawn by the Marketplace.

Note:

The part allocated to Lyra Collect is deducted from this commission. Therefore, the Marketplace
commission should cover the costs of Lyra Collect. For this reason, the total amount of commissions
included in the order is checked before the order is paid for.

Calculation of minimum commission

To avoid raising an error when checking the commission, you can first check that the commission amount
sent to the marketplace API is greater than or equal to the minimum commission, the formula for which
is given below:

Symbol Definition Example 1 Example 2

Commin Minimum commission

a Coefficient of the minimum
commission in proportion to
the total amount of the order
(commission included)

2% 1%

b Fixed commission per
transaction

€0.50 €0.20

M Commission-free order
amount

€100.00 €100.00

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 8 / 84

Symbol Definition Example 1 Example 2

n Number of order transactions 1 3

vat VAT rate 20% 20%

Note:

• a, b and vat are configured in the marketplace API. If you are not familiar with them, reach out to
your sales contact.

• The marketplace that transmits the order to the marketplace API handles M and n.

The minimum commission is obtained using the following formula according to the order amount excluding
commission (M):

With the amounts provided in the example, expressed in cents, the minimum commission is:

Example 1:

Example 2:

The transmitted commission amount should therefore be at least equal to €3.08 in example 1, and €1.95
in example 2.

Submission methods

There are two ways of specifying the commission amount:

1. The commission is defined within the order: the commission amount is indicated through a commission
type item, marked with the attribute is_commission=true. The seller of this item must be a Marketplace
seller, i.e. the one whose is_marketplace_seller attribute is set to "true". In this case, the amount of
the commission is added to the amount of the other items.

Example:

"items": [
{
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "reference": "sub_merchant_product",
 "description": "Product",
 "amount": 10000,
 "quantity": 1
},
{
 "seller": "72ccc2ff-b455-4653-847e-deb6fee99f8d",
 "reference": "marketplace_commission",
 "description": "Commission",
 "amount": 1000, "quantity": 1,
 "is_commission": true
}]

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 9 / 84

In this example, if the order currency is EUR and it contains 2 items, 1 item of €100 and 1 item of a €10
commission, then the total order amount is 100 + 10 = €110.

The seller will receive €100 and the marketplace will receive €10 (minus the part allocated to Lyra
Collect).

2. The commission is defined within an item: the commission amount is specified by setting the
commission_amount attribute of the item. In this case, the commission amount is deducted from
the amount associated with the item and the commission_amount can thus be defined for the sub-
merchants (and not for the marketplace operator).

Example:

{
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "reference": "abcdef",
 "description": "Restaurant",
 "amount": 10000,
 "quantity": 1,
 "commission_amount": 1000,
 "is_commission": false
}

In this example, if the order currency is EUR, the item is worth €100 and the commission_amount
attribute is set to €10, the Marketplace will receive €10, and the item merchant will receive 100 - 10
= €90.

This modality is useful for controlling the distribution of commissions between different items (and,
therefore, between different sellers).

Notes:

• It is possible to combine the two modes, i.e. to define a commission_amount within one or more items,
and add a commission type item. In this case, the commissions defined within an order are added to
the commissions defined within an item.

• On the other hand, it does not make sense - and it is not possible - to define a commission_amount
for a commission type item.

• The default value of the is_commission attribute is “false”. Thus, it is not necessary to indicate it for
non-commission items.

An example of creating an order is provided in chapter Making a payment on page 25.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 10 / 84

4. PRESENTATION OF THE WEB SERVICES

This document presents the Marketplace Web Services that allow to:

• Create an order

• Make the buyer pay on the Lyra Collect payment page via an embedded form

• View order details

The Marketplace Web Services have been developed in accordance with the REST protocol.

4.1. Main payment stages

1. If the merchant website has opted for and installed the embedded form, the buyer directly enters
their payment details using the form. Otherwise, the merchant website redirects the buyer to the
Lyra Collect payment page.

The payment page displays the total amount to be settled.

2. Lyra Collect makes the buyer pay the total amount.

3. If the payment is successful, Lyra Collect creates credit transfers to the Provider(s) specified in the
shopping cart.

4. Lyra Collect performs the capture of the transaction made by credit card and sends the transfer file to
the Bank.

4.2. Web service resources

The Marketplace Web Services are available at the following address:

• Test Mode (integration phase): https://secure.lyra.com/marketplace-test/

• Production: https://secure.lyra.com/marketplace/

The resources of this API can be found via different HTTP methods:

Resources Action HTTP method URI

Retrieve the list of Marketplaces GET /marketplaces/Marketplaces

Retrieve Marketplace details GET /marketplaces/{id_marketplace}

Retrieve a provider GET /sellers/{id_seller}Sellers

Retrieve the list of providers GET /marketplaces/{id_marketplace}

Create an order POST /orders?expand=items

Modify an order PUT /orders/{id_order}

Retrieve an order GET /orders/{id_order}

Retrieve the list of Marketplace orders GET /orders

Finalize an order and prepare the payment page GET /orders/{id_order}/execute

Finalize an order and retrieve the token of the
embedded form

GET /orders/{id_order}/embedded-
execute

Finalize an order and retrieve the form token initialize
the payment via the mobile SDK

GET /orders/{id_order}/embedded-
execute

Orders

Cancel an order DELETE /orders/{id_order}

Items Retrieve an element of an order GET /items/{id_item}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 11 / 84

Resources Action HTTP method URI

Retrieve order details GET /orders/{id_order}/items

Retrieve provider details GET /sellers/{id_seller}/items

Create an element (item) inside an order POST /orders/{id_order}/items

Unlock the payment of a previously locked item POST /items/{id_item}/activate

Perform a refund POST /refunds

Retrieve refund details GET /refunds/{id_refund}

Retrieve the list of an order refunds GET /{id_order}/refunds

Update a refund PUT /refunds/{id_refund}/

Refunds

Delete a refund DELETE /refunds/{id_refund}/

Create/update a token POST /tokens

Retrieve a simple token request GET /tokens/{id_token}

Tokens

Retrieve a token request linked to an order GET /tokens/{id_order}

Alias Retrieve token details GET /marketplaces/
{id_marketplace}/alias/
{id_alias}

List the cashouts for the sellers of a marketplace GET /cashoutsCashouts

Retrieve cashout details GET /cashouts/{id_cashout}

4.3. Prerequisites

Contact Lyra Collect to enable access to the Marketplace and obtain the environment.

Prerequisites for the Marketplace

• Opt for the Marketplace offer.

After you select this offer, the payment gateway will send you the data needed to access the
Marketplace:

• the ID of your Marketplace

• a login and a password required for your identification

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 12 / 84

5. UNDERSTANDING THE MARKETPLACE PAYMENT FLOW

Below is the step-by-step process of a payment on the Marketplace:

Stages Actors Actions

1 Buyer Validates his/her cart on the Marketplace website.

2 Marketplace Creates an Order via the REST API (POST ORDER) containing items.

3 Marketplace Fixes the Order via the REST API (GET ORDER).
Finalizes the Order and prepares the payment page or the token of the embedded form.

4 Payment
gateway

Creates the payment context of the Order.
If the embedded form is enabled, returns a token (form-token) to the Marketplace, which
must be inserted in the embedded form. Otherwise, returns a URL to the Marketplace for
redirecting the buyer to the payment page.

5 Marketplace If the embedded form is enabled, builds the form on the merchant website. Otherwise, it
redirects the buyer to the URL provided by the payment gateway and retrieved by the GET
ORDER.

6 Buyer Fills in the bank details (+ 3D Secure authentication on the payment pages).

7 Payment
gateway

Validates and records the transaction.

8 Payment
gateway

Updates the status of the Items and the Order.

9 Payment
gateway

Sends a notification to the Marketplace (and, potentially, to the embedded form) indicating
that the Order status has changed.

10 Marketplace Calls the payment gateway to find out the Order status and updates the system (GET
ORDER).

11 Payment
gateway

Redirects the buyer to the Marketplace (return URL provided by the Marketplace =
merchant website).

12 Payment
gateway

Performs a capture in the bank of the credit card (or another) transaction.
Creates transfers in the Seller’s shop.
Sends the order file of the transfer to the bank.

13 Payment
gateway

Notifies the Marketplace about the modification of the Order and Items statuses.

14 Marketplace Calls the payment gateway to find out the Order status and updates the system (GET
ORDER).

15 Marketplace Manually validates the order file of the transfer in the its bank's interface.

16 Bank Executes the requested transfers.

The status of resources varies throughout the entire payment process.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 13 / 84

• Order resource life cycle

• Item resource life cycle

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 14 / 84

• Tokens resource life cycle

• Refunds resource life cycle

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 15 / 84

6. IDENTIFYING YOURSELF DURING DATA EXCHANGE

Identification is performed by means of an HTTP header.

The used method is HTTP Basic Authentication.

In each HTTP request, the header must contain the information allowing the Marketplace to authenticate
itself when connecting to Marketplace Web Services.

Description of HTTP headers:

Headers Description Values to use

Accept Determines the format of the contents that will be returned by the server.
REST architecture that allows to perform data exchange in JSON format.

'Accept: application/
json'

Authorization:
Description

Identification token according to the "Basic Authentication over HTTPS"
principle. Consists of an identifier and a password of the API user separated by
a ':', both encoded in Base64.

'Authorization: Basic
YWRtaW46YWRtaW4='

Content-type Determines the format of the contents sent to the server. 'content-type:
application/json'

Method See the table in the Web Service resources chapter to see the methods to be
used according to each resource.

GET | POST | PUT |
DELETE

The steps for building headers are:

1. Use the Basic Authentication method.

2. Specify the used method in the Authorization header: Basic followed by the login and the password
(encoded in Base64) separated by a ':'.

3. Encode the obtained result in Base64.

4. Add the chain into "Basic".

Note:

Do not forget to add a space after Basic.

• Example cURL:

$ curl 'https://secure.lyra.com/marketplace-test/123456/orders/' -H
'Authorization: Basic YWRtaW46YWRtaW4=' -H
'Content-Type: application/json' -H 'Accept: application/json' --data
'{}'
-i

• Example of a complete request in Python:

r = requests.post(
<target url>,
data=<json data>,
auth=(<api login>, <api password>),
headers={'content-type': 'application/json'},
verify=False
)

• Example of a request in .NET:

var myURL = "https://secure.lyra.com/marketplace-test/orders?expand=items"
HttpWebRequest myHttpWebRequest = (HttpWebRequest)WebRequest.Create(myURL);
myHttpWebRequest.ContentType = "application/json";
myHttpWebRequest.Accept = "application/json";
myHttpWebRequest.Method = "post";
string authInfo = userName + ":" + userPassword;
authInfo = Convert.ToBase64String(Encoding.Default.GetBytes(authInfo));
myHttpWebRequest.Headers["Authorization"] = "Basic " + authInfo;

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 16 / 84

7. UNDERSTANDING MARKETPLACE DATA

With the help of the login details and the unique identifier of your Marketplace (uuid) transmitted by our
services, you can access your Marketplace data by calling the resource:

GET /marketplaces/{uuid}

Here is an example of a response for a Marketplace whose uuid is 2434c0a2-9d46-4e96-9553-1536c898625b:

Request

GET https://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c898625b

Response

{
 "href":"https://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c898625
 "uuid":"2434c0a2-9d46-4e96-9553-1536c898625b",
 "created_at":"2017-03-13T14:58:40.801000Z",
 "updated_at":"2020-12-07T10:41:12.184969Z",
 "reference":"MKP000001",
 "description":"La maison du cheesecake",
 "billing_method":"CASHOUT",
 "bic":"",
 "iban":"",
 "vads_key":"12345678",
 "vads_cert":"123456789012345",
 "status":"ACTIVE",
 "links": {
 "sellers": {
 "href":"https://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c89
 },
 "orders": {
 "href":"https://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c898
 },
 "registrations":{
 "href":"http://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c8986
 },
 "webhooks":{
 "href":"http://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c8986
 }
 },
 "max_capture_delay":6,
 "tva_rate":"20.00",
 "currencies":[
 {
 "currency":"EUR",
 "commission_prorata":2.0,
 "commission_fix":20,
 "is_active":true
 },
 {
 "currency":"GBP",
 "commission_prorata":1.0,
 "commission_fix":60,
 "is_active":true
 }
],
 "vouchers": [
 {
 "contract_type":"CONECS"
 }
]
}

What do we know from this example?

1. First of all, that the Marketplace is active. That it corresponds to the shop ID “12345678” with the key
“123456789012345”.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 17 / 84

These two pieces of information are accessible via the Expert Back Office and are specified directly by
the Lyra Collect services upon the Marketplace registration.

2. Its billing_method indicates that it is configured for a so-called “cashout” direct debit. As opposed to a
“monthly” direct debit, the marketplace must respect a minimum commission amount for each order.

3. The list of available webhooks used by the marketplace can
be found at the following address: "https://secure.lyra.com/marketplace/
marketplaces/2434c0a2-9d46-4e96-9553-1536c898625b/webhooks"

4. The list of sellers can be found at the following address:

"https://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c898625b/
sellers"

5. The list of orders can be found at the following address:

"http://secure.lyra.com/marketplace/marketplaces/2434c0a2-9d46-4e96-9553-1536c898625b/
orders"

6. There are two currencies enabled on the Marketplace, with separate minimum commission parameters:

• Euro, with 2% of the pro rata of the total order amount and 10 cents per transaction;

• Pound sterling, with 1% of the total order amount and 60 pence.

7. Finally, the marketplace can accept the registration of 'CONECS' acquirer MIDs for its sub-merchants,
who can then offer payment by meal voucher.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 18 / 84

8. UNDERSTANDING THE RETURN CODES OF THE HTTP STATUS
SENT VIA WEB SERVICE

Error code Description

200 - 20X Successfully processed request

401 Unauthorized access (problem in the Authorization header)

403 Forbidden access (the API user does not have the permission to perform this request)

400 Bad input data (example: the format of some parameters is not respected)

404 The requested object cannot be found (a non-existent UUID was requested)

500 Internal server error

Here are some examples of path analysis in order to help you quickly resolve the occurred issues:

Error 400:

• "?expand=items" is absent at the end of the POST order request

• accents are not encoded in ANSI

• the item reference includes spaces

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 19 / 84

9. VIEWING THE SUB-MERCHANTS REGISTERED ON THE
MARKETPLACE

To view the sub-merchants registered in the marketplace, you must launch a call in GET mode.

GET /marketplaces/{marketplace}/sellers

Replace {marketplace} with the uuid provided by Lyra Collect.

For example:

Request

GET https://secure.lyra.com/marketplace/marketplaces/30805a03-11ec-4447-93a5-243f39c89009/
sellers

Response

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "uuid": "eb94407d-c433-40ba-a5d3-d1baa0f7ed0a",
 "href": "https://secure.lyra.com/marketplace/sellers/eb94407d-c433-40ba-a5d3-
d1baa0f7ed0a",
 "created_at": "2018-04-13T12:57:59.943702Z",
 "updated_at": "2018-04-13T12:57:59.943713Z",
 "marketplace": "30805a03-11ec-4447-93a5-243f39c89009",
 "reference": "MKPINTEG_Seller",
 "description": "",
 "bic": "",
 "iban": "",
 "status": "ACTIVE",
 "links": {
 "items": {
 "href": "https://secure.lyra.com/marketplace/sellers/eb94407d-c433-40ba-a5d3-
d1baa0f7ed0a/items"
 },
 "transfers": {
 "href": "https://secure.lyra.com/marketplace/sellers/eb94407d-c433-40ba-a5d3-
d1baa0f7ed0a/transfers"
 }
 }
 }
]
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 20 / 84

10. USING WEBHOOKS

Webhooks allow you to be automatically notified when an object’s status changes (order, registration,
refund, etc.). By following its life cycle, you are able to react by triggering new events, calls, etc.

For example: a webhook is sent to you when the payment for an order is captured on the payment account from which you
can, if this has been agreed upon in your business process, send information to your sub-merchant to validate the delivery.

For security reasons, the webhook is reduced to its simplest form that is unusable without an authenticated
access to the API. This is a POST request with the following body:

{"order":"dd5e4c4c-2c07-4af8-ae30-15f4c6d5b5e5"}

When you receive this webhook, it is up to you to interrogate the object in question via the corresponding
resource provided to you, and find out the new status.

Example:

GET https://secure.lyra.com/orders/dd5e4c4c-2c07-4af8-ae30-15f4c6d5b5e5)

Usually, the webhook reaches the marketplace server a few seconds after the status change. If an error
occurs when it is sent (e.g. network unavailable), it can be resent up to two additional times, i.e. three
times in total, at 15-minute intervals.

The webhook is not resent if there is an error once it is received (for example: if your server returns a 400,
404, 500 status, etc.). To avoid the most common errors, a dispatch and receipt check is carried out when
the webhook is registered.

This section explains how to:

1. Define one (or more) access points

2. Access the available webhooks, and those currently defined on your marketplace

3. Register, modify and delete your webhooks.

10.1. Defining the webhook address

A webhook implies that you provide the API with an address for receiving information.

As mentioned earlier, webhooks are defined by object type. You can therefore define as many access points
as there are objects to track.

These access points must be able to receive and process POST calls with the Content-Type: application/
json header, and the following content:

{"<event_type>":"<uuid>"}

For example:

{"order":"dd5e4c4c-2c07-4af8-ae30-15f4c6d5b5e5"}

Currently, the objects concerned are:

• order

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 21 / 84

• token

• registrations

• refund

Each time a webhook is created or modified, a notification test is performed with an empty request body
to which your server must respond with a 200 status (see chapter Registering, modifying or deleting a
webhook on page 22).

To increase your process security, you can check that the webhook originates from the IP range
194.50.38.0/24.

10.2. Accessing the webhooks defined and available on your marketplace

All your webhooks are available via the resource:

GET /marketplaces/{marketplace}/webhooks

The resource returns:

1. The list of webhooks currently defined on the marketplace

2. And the list of available but unused webhooks

Note: this list will get longer along with the development of the Marketplace API

Example:

Request

GET https://secure.lyra.com/marketplace/marketplaces/6f6b04c2-0e99-4f8d-b710-8856f5654bb8/
webhooks

Response

[{ "event_type":"order", "target":"https://mymarketplace.com/mkp/webhooks/order.php" },
 { "event_type":"token", "target":"https://mymarketplace.com/mkp/webhooks/order.php" },
 { "event_type":"refund", "target":null }, { "event_type":"registration", "target":null }]

This response indicates that only one webhook address is used for two objects, order and token, but that
the webhooks for the refund and registration objects are not specified, and are therefore inactive.

10.3. Registering, modifying or deleting a webhook

10.3.1. Adding a webhook

In order to add a webhook, first check that the webhook address is public and returns a 200 status when
an empty request is received, then execute a request

POST /marketplaces/{marketplace}/webhooks

with the following body:

{

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 22 / 84

 "event_type":"<event_type">,
 "target":"<webhook_url>"
}

For example:

Request

POST https://secure.lyra.com/marketplaces/6f6b04c2-0e99-4f8d-b710-8856f5654bb8/webhooks

Body

{
 "event_type":"registration",
 "target":"https://mymarketplace.com/mkp/webhooks/sellers.php"
}

In case of an error during the test, the creation (or modification) request will return a 400 error.

Example if you have declared a non-existent page as webhook:

{"error":"Url https://mymarketplace.com/mkp/webhooks/sellers.php returned a status 404 instead
 of 200}

In case of success, the server returns a 200 code and the corresponding object.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 23 / 84

10.3.2. Modifying a webhook

The same principles apply to the modification of the webhook, except that a PUT request must be made
instead of POST.

PUT /marketplaces/{marketplace}/webhooks

Example for assigning a new address to the existing webhook on the token object:

Request

PUT https://secure.lyra.com/marketplaces/6f6b04c2-0e99-4f8d-b710-8856f5654bb8/webhooks

Body

{
 "event_type":"token",
 "target":"https://mymarketplace.com/mkp/webhooks/token.php"
}

10.3.3. Deleting a webhook

To delete a webhook, simply send a request

DELETE /marketplaces/{marketplace}/webhooks/{event_type}

For example to delete the webhook of the registration object:

DELETE https://secure.lyra.com/marketplaces/6f6b04c2-0e99-4f8d-b710-8856f5654bb8/webhooks/
registration

In case of success, the server returns a 204 status.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 24 / 84

11. MAKING A PAYMENT

In order to make a payment, follow the steps below:

1. Create an order by using the POST method on the ORDER resource.

2. You can update the order, for example to update the shopping cart or the commission fee amounts.

3. Fix the order to make the payment using the GET method:

• Either on the URL of the execute attribute provided in the ORDER links, in this case the response
contains the redirection URL (payment_url attribute).

• Or on the URL of the execute-embedded attribute for initializing payment via embedded form, in
this case the response contains a formToken (form_token attribute).

4. Redirect the Buyer to the payment page URL or display the embedded form using the form token.

Step 1

In order to declare items in your order, you must mention the ?expand=items argument in the URL (/
marketplace/orders?expand=items).

Otherwise, your items will not be taken into account (the list of items returned by the server is empty) and
the order will be created without items. When the order is executed (step 3), you encounter the error 400
{"amount":"The sum of item amounts cannot be zero or negative."}.

Example of a POST ORDER call:

POST https://secure.lyra.com/marketplace/orders?expand=items

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "url_return": "https://URLreturn.com",
"items": [
 {
 "seller": "d0f80202-0676-4d8d-9247-f455f30aec1b",
 "reference": "commburo",
 "description": "commission BURO",
 "amount": 150,
 "is_commission": true
 },
 {
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "reference": "STB1",
 "description": "blue pens
 "amount": 1000,
 "is_commission": false
 }
],
 "buyer": {
 "type": "PRIVATE",
 "email": "john.smith@buyer.com",
 "phone_number": "33 (0)1 11 22 33 44",
 "reference": "ZhIsYM"
 },
 "shipping": {
 "shipping_method": "RELAY_POINT"
 }
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 25 / 84

Example of a POST ORDER response:

{
 "uuid": "1a2b51f8-9d62-408f-ab39-aa8e28ab15f0",
 "href": "https://secure.lyra.com/marketplace/orders/1a2b51f8-9d62-408f-ab39-aa8e28ab15f0",
"created_at": "2019-01-21T16:46:46.517000Z",
 "updated_at": "2019-01-21T16:46:46.517000Z",
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "alias": null,
 "buyer": [
 {
 "reference": "ZhIsYM",
 "title": null,
 "type": "PRIVATE",
 "first_name": null,
 "last_name": null,
 "legal_name": null,
 "phone_number": "33 (0)1 11 22 33 44",
 "email": "john.smith@buyer.com",
 "address": null
 }
],
 "shipping": [
 {
 "shipping_method": "RELAY_POINT",
 "delivery_company_name": null,
 "shipping_speed": null,
 "shipping_delay": null,
 "type": null,
 "first_name": null,
 "last_name": null,
 "legal_name": null,
 "phone_number": null,
 "address": null
 }
],
 "amount": null,
 "initial_amount": null,
 "currency": "EUR",
 "status": "CREATED",
 "webhook_result": null,
 "url_return": "https://URLreturn.com",
"items": [
 {
 "uuid": "d33ba1ab-793e-4d3d-943f-72b14a1e885b",
 "href": "https://secure.lyra.com/marketplace/items/d33ba1ab-793e-4d3d-943f-72b14a1e885b",
"created_at": "2019-01-21T16:46:46.510000Z",
 "updated_at": "2019-01-21T16:46:46.573000Z",
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "order": "1a2b51f8-9d62-408f-ab39-aa8e28ab15f0",
 "reference": "STB1",
 "description": "Blue pens”,
 "type": "ENTERTAINMENT",
 "amount": 1000,
 "quantity": 1,
 "transfer": null,
 "status": "CREATED",
 "links": null,
 "is_commission": false
 },
 {
 "uuid": "20034374-b425-4beb-91a8-a660ca5a3f9b",
 "href": "https://secure.lyra.com/marketplace/items/20034374-b425-4beb-91a8-a660ca5a3f9b",
"created_at": "2019-01-21T16:46:46.502000Z",
 "updated_at": "2019-01-21T16:46:46.551000Z",
 "seller": "d0f80202-0676-4d8d-9247-f455f30aec1b",
 "order": "1a2b51f8-9d62-408f-ab39-aa8e28ab15f0",
 "reference": "commburo",
 "description": "commission BURO",
 "type": "ENTERTAINMENT",
 "amount": 150,
 "quantity": 1,
 "transfer": null,
 "status": "CREATED",
 "links": null,
 "is_commission": true
 }
],
 "links": {
 "items": {
 "href": "https://secure.lyra.com/marketplace/orders/1a2b51f8-9d62-408f-ab39-aa8e28ab15f0/
items"
 },
 "refunds": {

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 26 / 84

 "href": "https://secure.lyra.com/marketplace/orders/1a2b51f8-9d62-408f-ab39-aa8e28ab15f0/
refunds"
 },
 "execute": {
 "href": "https://secure.lyra.com/marketplace/orders/1a2b51f8-9d62-408f-ab39-aa8e28ab15f0/
execute"
 },
 "execute-embedded": {
 "href": "https://secure.lyra.com/marketplace/orders/1a2b51f8-9d62-408f-ab39-aa8e28ab15f0/
execute-embedded"
 }
 },
 "vads_transaction_id": 0,
 "vads_transaction_date": null,
 "expected_capture_date": null,
 "capture_delay": null
}

Step 2

An order can be modified multiple times by a PUT ORDER query (/marketplace/orders/<order_uuid>?
expand=items) using the order_uuid returned in step 1.

The buyer and shipping attributes must be specified.

The item list is updated with each PUT. If you wish to add another item, you must transmit it with the
already created items. Otherwise, the list will only contain one item.

On the other hand, in order to remove an item, you need to return a complete list of items without the
item that you wish to remove.

Example of a PUT ORDER call for adding an item to the cart:

PUT https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c?
expand=items

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "url_return": "https://URLreturn.com",
"items": [
 {
 "seller": "d0f80202-0676-4d8d-9247-f455f30aec1b",
 "reference": "commburo",
 "description": "commission BURO",
 "amount": 270,
 "is_commission": true
 },
 {
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "reference": "STB1",
 "description": "blue pens
 "amount": 1000,
 "is_commission": false
 },
 {
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "reference": "RP3",
 "description": "Red pens",
 "amount": 1000,
 "is_commission": false
 },
],
 "buyer": {
 "type": "PRIVATE",
 "email": "john.smith@buyer.com",
 "phone_number": "+44 (0)1 11 22 33 44",
 "reference": "ZhIsYM"
 },
 "shipping": {
 "shipping_method": "RELAY_POINT"
 }
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 27 / 84

Step 3

With the exception of manually validated payments (see chapter Manual validation payment on page
36), before making the execution request and freezing the order, you must make sure that the
commission amount is higher than the required minimum. If this is not the case, the execution request will
return a validation error 400 with the message {"commission": "Insufficient amount of commission."}.

You can find information on the minimum commission in the Commission principle section of the chapter
Presentation of the Marketplace on page 8.

Example of a GET call via redirection for freezing the order:

GET https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c/execute

Example of a GET response:

{
 'payment_url': 'https://secure.lyra.com/vads-payment/
exec.refresh.a;jsessionid=HqKAcpvcgZQA29qCZDjXw4kS.marketplacevad01?
cacheId=450272311503195000050'
}

Example of a GET call via the embedded form for freezing the order:

GET https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25b08d7e41e43c/execute-
embedded

Example of a GET response:

{"form_token":"fa0yfV2FQuR3aak1SwsgcuZg195eyJhbW91bnQiOjEwOTAwLCJjdXJyZW5jeSI6IkVVUiIsIm
 1vZGUiOiJURVNUIiwidmVyc2lvbiI6Mywib3JkZXJJZCI6IjVjNDk1N2E5LWNkOGEtNGJhZC1hMGNiLTgxMT
 ZiMWE3ZDdmNiIsInNob3BOYW1lIjoiTHlyYSBTTVMiLCJicmFuZFByaW9yaXR5IjpbIkJBTkNPTlRBQ1QiL
 CJDQiIsIkUtQ0FSVEVCTEVVRSIsIk1BU1RFUkNBUkQiLCVGQVVMVCJ9fX0a702"}

Note: the size of the form_token can be up to 8KB.

Step 4

In case of payment with redirection, simply redirect the buyer to the provided link. The same address can
be used for an iframe display.

In case of an embedded payment form, the form_token must be inserted in the form (kr-form-token
attribute).

Example:

<body>
 <!-- payment form -->
 <div class="kr-embedded"
 kr-form-token="fa0yfV2FQuR3aak1SwsgcuZg195eyJhbW91bnQiOjEwOTAwLCJjdXJyZW5jeSI6IkVVUiIsIm
 1vZGUiOiJURVNUIiwidmVyc2lvbiI6Mywib3JkZXJJZCI6IjVjNDk1N2E5LWNkOGEtNGJhZC1hMGNiLTgxMT
 ZiMWE3ZDdmNiIsInNob3BOYW1lIjoiTHlyYSBTTVMiLCJicmFuZFByaW9yaXR5IjpbIkJBTkNPTlRBQ1QiL
 CJDQiIsIkUtQ0FSVEVCTEVVRSIsIk1BU1RFUkNBUkQiLCVGQVVMVCJ9fX0a702">
 <!-- payment form fields -->
 <div class="kr-pan"></div>
 <div class="kr-expiry"></div>
 <div class="kr-security-code"></div>

 <!-- payment form submit button -->
 <button class="kr-payment-button"></button>
 <!-- error zone -->
 <div class="kr-form-error"></div>
 </div>
</body>

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 28 / 84

11.1. Installment payment

If the Buyer wishes to extend the payment over a period of time, he or she can make a payment in
installments.

During a payment in installments, all the transactions are created on the days of payment.

Only the first installment can be guaranteed to the Merchant on the condition that their requested capture
date is set before the authorization expiry date, depending on the payment method.

At the time of the payment, the validity of the payment method is checked throughout the payment
schedule.

This payment mode is not supported by the embedded form.

The list of transactions can be seen at the following address:

GET /orders/{order}/transactions

It also appears on the list of links in response to a GET ORDER, POST ORDER, or PUT ORDER.

You should note that transactions are generated after the order has been paid. If the link is visited before,
the list of transactions is empty.

In order to initialize a payment in installments, simply add the payment_config attribute in the POST ORDER
resource when creating the order.

Here is an example of how to use the payment_config attribute:

{
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "payment_config" : "MULTI:first=30000;count=3;period=30"
 "reference": "order00053",
 "description": Order",
 "currency": "EUR",
 "url_return": "http://www.my-website.com",
 "language":"en"
}

Notes:

• By default, the payment is mono-transactional. If the payment_config attribute is not specified when
the order is created, it will take the SINGLE value;

• Once the order is fixed, it is not possible to change the payment_config value. However, some
parameters of pending transactions can still be changed (see infra);

• Payment in installments is currently not compatible with cascading payment (and is therefore not
compatible with the Electronic Meal Voucher system).

Two different payments in installments can be defined, depending on whether the Marketplace wishes to
automatically create a regular schedule, or define the dates and amounts at its discretion.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 29 / 84

11.1.1. Regular payments: MULTI

In case of a regular payment schedule, the first payment is made on the day of order creation, and its
amount must be specified. The amounts and dates of the following payments are calculated according to
the remaining amount and the number and frequency of the installments.

Syntax: the value of payment_config must be prefixed with the “MULTI:” string followed by key=value pairs
separated by “;”:

• first=: amount of the first installment (expressed in the smallest currency unit)

• count=: total number of installments

• period=: interval in days between 2 installments

Example:

The amount of the last transfer is calculated according to the amount remaining to be paid.

If a round-off is necessary, it is applied.

For example, in case of an order of €1,000 placed on January 15, the following payment_config:

{
 ...
 "amount": "100000",
 "payment_config": "MULTI:first=30000;count=4;period=30",
 ...
}

corresponds to a payment in 4 installments, including:

• a first transfer of €300 on January 15

• a second transfer of (1000 - 300) / 3 = €233.33 on February 14

• a third transfer of €233.33 on March 16

• and the last transfer of €233.34 on April 15

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 30 / 84

11.1.2. Custom schedule: MULTI_EXT

In case of a custom schedule, all transaction amounts and dates are specified by the marketplace. This
makes it possible to define variable amounts, and the first transaction can be subsequent to the day of
the order.

However, certain constraints must be respected:

• The date of the first installment payment shall not be earlier than the day of payment.

• It is only possible to record one transaction per day.

• The delay between the payment date and the last transaction may not exceed 365 days.

Syntax: Syntax: the value of payment_config must be prefixed with the “MULTI_EXT:” string, followed by
the list of installments in date=amount format separated by “;”.

Dates must be expressed in the YYYYMMDD format.

The amounts must be expressed in the smallest currency unit.

To use the previous example, but this time for settling order installments on the 15th of each month, the
payment_config value should look like this:

{
...
"amount": "100000",
"payment_config": "MULTI_EXT:20200115=30000;20200215=23333;20200315=23333;20200415=23334",
...
}

Note: Using the MULTI_EXT value requires a subscription to the Advanced installment payment option.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 31 / 84

11.2. Payment with capture delay

A delay for capturing the transaction can be defined upon order creation. To do this, populate the
capture_delay attribute with the desired number of days for the delay.

This value must be between 0 and 6:

Example:

Request

POST https://secure.lyra.com/marketplace/orders?expand=items

Body

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "capture_delay": "3",
 ...
}

The capture_delay attribute cannot be used for changing the capture date of the transaction
associated with an already executed order (PENDING status). You must pass “expected_capture_date”
with the desired capture date, between the current date (D) and D+6. The format of the date is
“YYYYMMDDHHMMSS”.

Example:

Request

PUT https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c

Body

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "Exemple MKP BURO",
 "description": "Commande fournitures",
 "currency": "EUR",
 "expected_capture_date": "20190425193000",
 ...
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 32 / 84

11.3. Payment with token creation

When creating an order, you can request to record the payment details as a token that can be reused.

For this, use the "execute/token" (or "execute-embedded/token") command instead of "execute" when
validating the order.

Example of a GET call to fix the order:

GET https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c/execute/
token

When the order is executed, a "token" object is created. Its UUID is the same as for the Order.

It is made up of two elements:

• A “buyer” object, as defined in the order.

• A “token” attribute, where the payment method data will be stored.

See chapter Token management on page 48 for more information on tokens and aliases.

Then, redirect the Buyer to the URL transmitted in payment_url to proceed to payment with payment
method recording.

After the payment, a GET Order will not return the created token.

In order to obtain the token, make a GET token call with the UUID of the Order.

Go to chapter Analyzing the result of a token request on page 50 to see the result of Get token.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 33 / 84

11.4. Payment by token

To use a token referenced in an order, add the alias attribute when creating the order.

Example:

Request

POST https://secure.lyra.com/marketplace/orders?expand=items

Body

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "Exemple MKP BURO",
 "description": "Commande fournitures",
 "currency": "EUR",
 "alias": "1144951ea7ab42989c97159b3dfc0382",
 ...
}

By calling “execute” on this order, the payment will be made via the payment page with the token that has
“1144951ea7ab42989c97159b3dfc0382” as an alias.

By calling “execute-embedded” on this order, the payment will be made via the embedded form with the
token that has “1144951ea7ab42989c97159b3dfc0382” as an alias.

By calling “execute/token”, the token will also be updated via the payment page with the information
contained in the order.

By calling “execute-embedded/token”, the token will also be updated via the embedded form with the
information contained in the order.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 34 / 84

11.5. Payment initiated by the Merchant

The use of an alias when creating an order allows to execute payments initiated by the Merchant
(“Merchant Initiated Transaction”): the payment is made without interaction with the cardholder.

This functionality can be useful in the case of recurring payments.

For this, create a payment by token (see chapter Payment by token on page 34), then use the execute-mit
link returned by the server.

For example:

Request

POST https://secure.lyra.com/marketplace/orders?expand=items

Body

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "alias": "1144951ea7ab42989c97159b3dfc0382",
 ...
}

In the sever response, the links attribute contains the execute-mit link to be called.

{...
 "links": {
 "execute-mit": {
 "href": "http://mymarketplace.com/marketplace/orders/5a439e70-4ccc-4d86-bf30-223552e2c74f/
execute-mit"
 },
…
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 35 / 84

11.6. Manual validation payment

By default, orders are validated automatically during step 2 of the payment (during GET <url>/execute).

It is also possible to dissociate the steps of payment authorization from those of a transaction capture.

This allows to make authorizations while the final transfer of cart items between the seller amount and the
Marketplace fee amount is not yet known.

Step 1

In order to enable this feature, all you need to do is add the awaiting_validation attribute when creating
the order and assigning it the true value.

Example of a POST ORDER creation call in manual validation mode:

POST https://secure.lyra.com/marketplace/orders?expand=items

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "url_return": "https://URLreturn.com",
 "awaiting_validation" : true,
 "items": [
 {
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "reference": "STB1",
 "description": "blue pens
 "amount": 1150,
 "is_commission": false
 }
],
 "buyer":
 {
 "type": "PRIVATE",
 "email": "john.smith@buyer.com",
 "phone_number": "33 (0)1 11 22 33 44",
 "reference": "ZhIsYM"
 },
 "shipping":
 {
 "shipping_method": "RELAY_POINT"
 }
}

In this example, the amount of the item (buyer amount) is known, but not the percentage of the sub-
merchant and the operator fee (Marketplace).

Note: Please note that operator fees can already be specified in this step. If needed, they can be
updated in step 4.

Step 2

Step 2 is executed in the same way as in case of standard payment and the redirection URL for proceeding
to the payment is returned.

Example of a GET call to fix the order:

GET https://secure.lyra.com/marketplaces/marketplace/
orders/7fac13b0-7ab9-4382-9073-11ddb38d4427/execute

Since the order is waiting for validation, the verification steps of the minimum fee amount are not executed.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 36 / 84

Step 3

Once the payment has been successfully made, the order status changes to PENDING and the status of the
corresponding transactions changes to TO_VALIDATE.

Step 4

This optional step allows to the amount of the operator fees if they were not provided in step 1.

It is also possible to add:

• a fee item

• and/or fees for items (see corresponding paragraph).

One or several items can also be deleted (standard function).

The total amount of the order can be decreased but not increased.

On the other hand, the awaiting_validation attribute cannot be modified.

Step 5

The process is finalized with the validation of the order. During this step one can make sure that the amount
of the fee is sufficient.

In order to validate an order, make a POST to the URL of the order, validate attribute.

Example of a POST ORDER call for manually validating it:

POST https://secure.lyra.com/marketplace/orders/7fac13b0-7ab9-4382-9073-11ddb38d4427/validate

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 37 / 84

Example of the validate POST ORDER response:

The order details are returned. The awaiting_validation attribute of the order then takes the false value
and the status of the corresponding transactions changes from TO_VALIDATE to PENDING.

{
 "uuid": "7fac13b0-7ab9-4382-9073-11ddb38d4427",
 "href": "https://secure.lyra.com/marketplace/orders/7fac13b0-7ab9-4382-9073-11ddb38d4427",
 "created_at": "2019-05-27T09:30:24.434556Z",
 "updated_at": "2019-05-27T09:36:06.500936Z",
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": “MKP BURO 2 Example",
 "description": “Order of supplies",
 "alias": null,
 "awaiting_validation": false,
 "buyer": [
 {
 "reference": "ZhIsYM",
 "title": null,
 "type": "PRIVATE",
 "first_name": null,
 "last_name": null,
 "legal_name": null,
 "phone_number": "33 (0)1 11 22 33 44",
 "email": "john.mith@buyer.com",
 "address": null
 }
],
 "shipping": [
 {
 "shipping_method": "RELAY_POINT",
 "delivery_company_name": null,
 "shipping_speed": null,
 "shipping_delay": null,
 "type": null,
 "first_name": null,
 "last_name": null,
 "legal_name": null,
 "phone_number": null,
 "address":
 {
 "street_number": "37",
 "street": "rue Marcel Philippe",
 "district": "Wallis-et-Futuna",
 "zipcode": "59259",
 "city": "Dupont",
 "state": "Meurthe-et-Moselle",
 "country": "FR"
 }
 }
],
 "payment_config": "SINGLE",
 "amount": 1150,
 "initial_amount": 1150,
 "currency": "EUR",
 "status": "PENDING",
 "webhook_result": 200,
 "url_return": "https://URLreturn.com",
 "links":
 {
 "items":
 {
 "href": "https://secure.lyra.com/marketplace/
orders/7fac13b0-7ab9-4382-9073-11ddb38d4427/items"
 },
 "transactions":
 {
 "href": "https://secure.lyra.com/marketplace/
orders/7fac13b0-7ab9-4382-9073-11ddb38d4427/transactions"
 },
 "refunds":
 {
 "href": "https://secure.lyra.com/marketplace/
orders/7fac13b0-7ab9-4382-9073-11ddb38d4427/refunds"
 }
 },
 "vads_transaction_id": 600001,
 "vads_transaction_date": "20190527093234",
 "expected_capture_date": "20190530093235",
 "capture_delay": 3
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 38 / 84

Important: The order can be validated as long as the expiration date of the authorization request
has not passed. If this date has passed, the transaction takes the final EXPIRED status, and the order
status changes to FAILED.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 39 / 84

11.7. Payment by voucher

The Marketplace API allows partial or full payment of the shopping cart items using vouchers such as
Electronic Meal Vouchers (TRD), holiday vouchers (chèques vacances), etc.

The currently enabled payment methods are:

Customary name Acquirer contract

Titres-Restaurant CONECS

Chèque-Vacances Connect CVCONNECT

11.7.1. Prerequisites

1. At the marketplace level

The marketplace must be eligible for the specified voucher MID(s).

To make sure, make a GET request on the marketplace resource with the “vouchers” attribute:

GET /marketplaces/{uuid}

For example, for a marketplace eligible for CONECS and CVCONNECT MIDs, the response will contain
the following object list:

...
 "vouchers":[
 {
 "contract_type":"CONECS"
 },
 {
 "contract_type":"CVCONNECT"
 }
]
...

These parameters are specified by the Lyra Collect services. You can contact tech support if you notice
a deviation from the expected configuration.

2. At the sub-merchants’ level

The MID must be specified at the sub-merchant’s level.

For example, for a sub-merchant whose only active MID is CONECS:

GET /sellers/{uuid}

Example:

...
 "vouchers":[
 {
 "contract_type":"CONECS"
 "contract_number":"1999011"
 }
]
...

To create or activate a MID at the sub-merchant level via the onboarding API, see the corresponding
documentation.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 40 / 84

https://docs.lyra.com/en/collect/marketplace/marketplace-onboarding/sitemap.html
https://docs.lyra.com/en/collect/marketplace/marketplace-onboarding/sitemap.html

11.7.2. Creating and modifying the order

When an item is payable by voucher, you must indicate it by sending the list of MIDs concerned at the level
of the “items” object, as follows:

 "vouchers":[
 {
 "contract_type":"CVCONNECT"
 }
]

For CONECS MIDs, you must also specify the eligible amount (always in the smallest currency unit).

Example:

 "vouchers":[
 {
 "contract_type":"CONECS",
 "eligible_amount":1900
 }
]

You have the possibility to mention several MIDs for the same item.

Example:

...
 "items":[
 {
 "seller":"6f167596-07f2-4256-9210-7b4ab54fc3b9",
 "reference":"Buffet1",
 "description":"Buffet 1",
 "amount":8000,
 "type":"FOOD",
 "vouchers":[
 {
 "contract_type":"CVCONNECT"
 },
 {
 "contract_type":"CONECS",
 "eligible_amount":1400
 }
]
 },
...
]
...

In this example, “Buffet 1” is payable:

• by Titre-Restaurant (CONECS) up to €14,

• by Chèque-Vacances (CVCONNECT),

• or by both.

In this case, depending on the payment method chosen by the end buyer, the order may eventually result
in creating one, two or three transactions.

• 1 transaction:

• By classic card (CB, VISA, MasterCard, etc.) for the whole amount of €80

• Or by Chèque-Vacances for €80

• 2 transactions:

• By CONECS + classic card (CB, VISA, MasterCard, etc.)

• By CONECS + CVCONNECT

• Or by CVCONNECT + classic card (CB, VISA, MasterCard, etc.)

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 41 / 84

• 3 transactions:

• By CONECS + CVCONNECT + classic card (CB, VISA, MasterCard, etc.)

11.7.3. Selecting MIDs upon order execution

For each order, only one merchant can be paid by one of the MID types. Thus, if you indicate a CONECS
MID for several sub-merchants, only one of them can be paid by this payment method.

How does it work? When the order is executed, the API calculates the total amount per MID of the amounts
payable by voucher and then, for each MID, selects the merchant with the highest amount.

In the following (simplified) example:

...
 "items":[
 {
 "external_ref":"seller1",
 "ref":"Seller 1 Item 1",
 "amount":2000,
 "voucher":[
 {
 "contract_type":"CONECS",
 "eligible_amount":900
 }
]
 },
 {
 "external_ref":"seller1",
 "ref":"Seller 1 Item 2",
 "amount":4000,
 "voucher":[
 {
 "contract_type":"CONECS",
 "eligible_amount":500
 }
]
 },
 {
 "external_ref":"seller2",
 "ref":"Seller 2 Item 1",
 "amount":2000,
 "voucher":[
 {
 "contract_type":"CONECS",
 "eligible_amount":1900
 }
]
 }
]

Seller 2 will be selected, as their eligible amount is €19 versus €14 (= 9 + 5) for Seller 1.

The principle is the same for CVCONNECT MIDs.

The selection is independent from one MID to another, i.e. one sub-merchant can be selected for a CONECS
MID and another can be selected for the CVCONNECT MID, while both offer the two MIDs.

NOTE
If the amounts to be split are identical, the decision is made according to the MID number.

At the end of the execution, each “voucher” object of the concerned articles receives the is_selected
attribute that is populated depending on the selection.

For example:

...
 "status":"CREATED",
 "amount":8000,
 "items":[
 {
 "uuid":"fc300ee2-fd43-46e0-9314-770f05a5b338",
 ...
 "reference":"Buffet1",
 "description":"Buffet 1",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 42 / 84

 "type":"FOOD",
 "amount":8000,
 ...
 "vouchers":[
 {
 "contract_type":"CVCONNECT",
 "is_selected":true
 },
 {
 "contract_type":"CONECS",
 "eligible_amount":1400,
 "is_selected":true
 }
]
 }
]

11.7.4. After the payment

The choice of payment method and the amount actually paid per MID is only visible at the end of the
payment cycle.

From the marketplace point of view, this information is therefore only available from the moment the order
status changes to PENDING.

If a voucher was used, the actual_amount attribute provides information about the amount that was
affected to the item.

If we take the previous example, we can have the following “item” object:

...
"status":"PENDING",
"amount":8000,
"items":[{
 "uuid":"fc300ee2-fd43-46e0-9314-770f05a5b338",
 ...
 "reference":"Buffet1",
 "description":"Buffet 1",
 "type":"FOOD",
 "amount":8000,
 ...
 "vouchers":[{
 "contract_type":"CVCONNECT",
 "is_selected":true,
 "actual_amount":3000
 },
 {
 "contract_type":"CONECS",
 "eligible_amount":1400,
 "is_selected":true,
 "actual_amount":1100
 }]
 }]

In this example, we can see that the buyer paid €11 with a CONECS card and €30 with a holiday voucher
(Chèque-Vacances). Since the total amount is €80, there will be a third transaction for the remaining
amount (i.e. 80 - 30 - 11 = €39).

NOTE
Since an order can contain multiple items payable by voucher, the API automatically allocates the actual_amount in
random order. For example,

...
"items":[{
 "reference":"Buffet1",
 "description":"Buffet 1",
 "type":"FOOD",
 "amount":8000,
 ...
 "vouchers":[{
 "contract_type":"CONECS",
 "eligible_amount":1400,
 "is_selected":true,
 "actual_amount":1400
 }]

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 43 / 84

 },
 {
 "reference":"Buffet2",
 "description":"Buffet 2",
 "type":"FOOD",
 "amount":5500,
 ...
 "vouchers":[{
 "contract_type":"CONECS",
 "eligible_amount":1100,
 "is_selected":true,
 "actual_amount":500
 }]
 },
 {
 "reference":"Buffet3",
 "description":"Buffet 3",
 "type":"FOOD",
 "amount":5500,
 ...
 "vouchers":[{
 "contract_type":"CONECS",
 "eligible_amount":1100,
 "is_selected":true,
 "actual_amount":0
 }]
 }]
...

In this case, the buyer seems to have used their daily credit amount of €19, which was allocated for the entire first item
(€14), for a part of the second item (€5), and for none of the third item.
The credit of €19 could also be split as follows:

• €11 for Buffet 2;

• €8 for Buffet 3;

• €0 for Buffet 1.

11.7.5. Modification and cancellation

It is possible to cancel an order containing transactions that were paid by vouchers.

However, this type of transaction cannot be modified.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 44 / 84

11.8. Payment using a persistent link

You can generate a persistent payment link and send it to the end buyer.

By default, they will then have 10 days to display the payment form and complete their order.

11.8.1. Generating the link

As soon as the Order is created, a “persist” link is available in the Order object at the associated “links”
list level.

For example:

 ...
 "links": {
 ...
 "persist": {
 "href": "https://secure.lyra.com/marketplace/orders/c4e214db-3ba7-4646-84dc-4e247b1e4b5f/
persist"
 }
 ...
 },
 ...

In order to generate the payment link, simply call the corresponding resource:

GET /orders/{uuid}/persist

NOTE: This resource performs a redirection and returns the Order resource

Once generated, the persist_url link and the expiry_date will now be accessible every time you call the
Order object (via a POST, PUT or GET).

For example:

 ...
 "persist_url": "https://secure.lyra.com/t/ioeD1uRP",
 "expiry_date": "2021-02-15T15:37:47.632009Z"
 ...

NOTE: In case of continuous direct debits, the commission amount is checked from the first call of the GET /orders/
{order}/persist resource. The amount will be checked again when the payment form is called by the end buyer.

It is only possible to generate a persistent link on an Order with the “CREATED” status.

The links cannot be modified or deleted.

11.8.2. Adjusting the expiration date

By default, the expiration delay of the link is 10 days.

To adjust this delay, add the “delay” parameter during the link generation request.

For example:

GET https://secure.lyra.com/marketplace/orders/3c58e343-abbd-4c2b-9cac-42db158987b0/persist?
delay=5

The expiration delay cannot be modified after it has been created.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 45 / 84

12. ANALYZING THE PAYMENT RESULT

The Marketplace server is notified via a webhook about each change in the statuses of the Order and Token
objects.

The webhook is sent to the address specified by the marketplace during the integration phase.

This URL can be found in the "webhook_url” attribute of the Marketplace object.

The webhook is sent in POST with the "Content-Type: application/json” header.

Example of a notification (webhook)

{'order':'515abac9-6cb2-4e21-8a25-b08d7e41e43c'}

In PHP, this JSON can be retrieved using the following code:

$json = file_get_contents('php://input');
$data = json_decode($json);
$orderUuid = $data->order ?? false;

After that, the Marketplace has to call the GET ORDER (or TOKEN) resource with the transmitted UUID in
order to know the new status of the object in question.

GET /orders/{uuid}

Example of a GET ORDER call

GET https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c

Example of a GET ORDER response

{
 "uuid": "515abac9-6cb2-4e21-8a25-b08d7e41e43c",
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c",
 "created_at": "2015-03-19T16:30:14.434Z",
 "updated_at": "2015-03-19T16:30:14.434Z",
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "reference": "order00052",
 "description": "Order",
 "buyer":[
 {
 "reference": "nope775",
 "title": "Mrs",
 "type": "PRIVATE",
 "first_name": "Nathalie",
 "last_name": "Durand",
 "phone_number": "02 13 06 95 27",
 "email": "ndurand@tiscali.fr",
 "address": {
 "street_number": "29",
 "street": "rue Besnard",
 "district": "Île-de-France",
 "zipcode": "83819",
 "city": "Roux",
 "state": "Hautes-Pyrénées",
 "country": "FR"
 }
 }
],
 "shipping":[
 {
 "delivery_company_name": "DHL",
 "address": {
 "street_number": "493",
 "street": "avenue Duhamel",
 "district": "Saint-Martin",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 46 / 84

 "zipcode": "33980",
 "city": "Hamon",
 "state": "Charente-Maritime",
 "country": "FR"
 },
 "shipping_speed": "EXPRESS",
 "shipping_method": "ETICKET",
 "type": "PRIVATE",
 "first_name": "Luc",
 "last_name": "Leveque",
 "phone_number": "+33 (0)1 46 05 15 89"
 }
],
 "amount": null,
 "currency": "EUR",
 "status": "CREATED",
 "webhook_result": 200,
 "url_return": "http://www.lyra-sms.com/",
 "links": {
 "items": {
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-
b08d7e41e43c/items"
 },
 "transactions": {
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-
b08d7e41e43c/transactions"
 },
 "refunds": {
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-
b08d7e41e43c/refunds"
 },
 "execute":{
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-
b08d7e41e43c/execute"
 },
 "execute-embedded": {
 "href": "https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-
b08d7e41e43c/execute-embedded"
 },
 ...
 },
 "vads_transaction_id": 500003,
 "vads_transaction_date": ""
}

In case of any doubts concerning the transmission or the reception of the webhook, you can check the
"webhook_result" attribute of the resource in question. This attribute contains the "status code" of the
HTTP query made by our server. For example,

• If it is null, the webhook has not (yet) been sent.

• If it shows 200, the webhook should have reached you.

• If it shows 404, we invite you to check the webhook that you declared.

• etc.

Note:

The transaction authorization code is recorded in the auto_code attribute returned by the transaction
result (accessible via the GET Transaction resource (see Transaction object on page 80).

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 47 / 84

13. TOKEN MANAGEMENT

The Marketplace API uses two notions:

• alias

• token

An alias is an object that allows to store payment method data.

A token is an object associated with an alias. It also contains buyer details.

There are 2 ways of creating an alias (and a token):

1. During the payment (see chapter Payment with token creation on page 33). The alias and token are
therefore associated with an Order.

2. Without an Order being created (see next chapter).

13.1. Creating a token

It is possible to request the recording of the payment method (and, therefore, the token creation) without
it being linked to an order.

For this, you need to call the TOKEN API to create a token, with a query similar to the one used for creating
a payment.

Create a token using the payment page

POST /tokens/

Example:

Request

POST https://secure.lyra.com/marketplace/tokens/

Body

{
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "url_return": "http://www.my-website.com/",
 "buyer": {
 "type": "PRIVATE",
 "first_name": "Jean",
 "last_name": "Dupond",
 "email": "jean.dupond@lyra.fr",
 "phone_number": "1234",
 "reference": "Acheteur_1",
 "address": {
 "zipcode": "59259",
 "street_number": "37",
 "country": "FR",
 "street": "rue Marcel Philippe",
 "city": "Vignoux"
 }
 }
}

Response

{

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 48 / 84

 "token": "d3329266-c8d6-421c-8d2a-10a8ffbcaef6",
 "payment_url": "https://secure.lyra.com/vads-payment/
exec.refresh.a;jsessionid=335D2aDb5eF8356Aed2cf3dF.vadpayment02inte01lbg?
cacheId=913355311811276000040"
}

Once the token has been created, the Buyer must be redirected to the URL transmitted in payment_url in
order to proceed to payment method recording (and, therefore, to creating an alias).

Create a token using the embedded form

POST /tokens/embedded/

Example:

Request

POST https://secure.lyra.com/marketplace/tokens/embedded/

Body

{
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "url_return": "http://www.my-website.com/",
 "buyer": {
 "type": "PRIVATE",
 "first_name": "Jean",
 "last_name": "Dupond",
 "email": "jean.dupond@lyra.fr",
 "phone_number": "1234",
 "reference": "Acheteur_1",
 "address": {
 "zipcode": "59259",
 "street_number": "37",
 "country": "FR",
 "street": "rue Marcel Philippe",
 "city": "Vignoux"
 }
 }
}

Response

{
 "token": "d3329266-c8d6-421c-8d2a-10a8ffbcaef6",
 "form_token":"fa0yfV2FQuR3aak1SwsgcuZg195eyJhbW91bnQiOjEwOTAwLCJjdXJyZW5jeSI6IkVVUiIsIm
 1vZGUiOiJURVNUIiwidmVyc2lvbiI6Mywib3JkZXJJZCI6IjVjNDk1N2E5LWNkOGEtNGJhZC1hMGNiLTgxMT
 ZiMWE3ZDdmNiIsInNob3BOYW1lIjoiTHlyYSBTTVMiLCJicmFuZFByaW9yaXR5IjpbIkJBTkNPTlRBQ1QiL
 CJDQiIsIkUtQ0FSVEVCTEVVRSIsIk1BU1RFUkNBUkQiLCVGQVVMVCJ9fX0a702"
}

Once the token is created, the form_token must be inserted in the form (kr-form-token) attribute) to
proceed to payment method recording (and, therefore, to creating an alias).

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 49 / 84

13.2. Analyzing the result of a token request

As with a payment, the Marketplace will be notified via the webhook about the progress of a token request.

Example of a notification (webhook):

 {"token":"d3329266-c8d6-421c-8d2a-10a8ffbcaef6"}

The transmitted identifier will enable the Marketplace to execute a GET TOKEN to see if the token was
successfully created.

GET /tokens/{uuid}

Note:

During a payment with token creation, you will receive two notifications: one upon creating the Order and
one upon creating the token (use the ID of the token returned in the notification to find the corresponding
token).

Example of a GET TOKEN call:

 GET https://secure.lyra.com/marketplace/tokens/d3329266-c8d6-421c-8d2a-10a8ffbcaef6

Example of a GET TOKEN response:

{
 "uuid": "d3329266-c8d6-421c-8d2a-10a8ffbcaef6",
 "created_at": "2018-11-20T12:53:51.547541Z",
 "updated_at": "2018-11-20T12:53:52.513541Z",
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "buyer": {
 "reference": "Acheteur_1",
 "title": "MR",
 "type": "PRIVATE",
 "first_name": "Jean",
 "last_name": "Dupond",
 "phone_number": "012345678",
 "email": "jean.dupond@lyra.fr",
 "address": {
 "street_number": "37",
 "street": "rue Marcel Philippe",
 "district": null,
 "zipcode": "59259",
 "city": "Martin",
 "state": null,
 "country": "FR"
 }
 },
 "language": "fr",
 "url_return": "http://www.my-website.com/",
 "status": "SUCCEEDED",
 "alias": "1144951ea7ab42989c97159b3dfc0382",
 "alias_to_update": null,
 "payment_url": "https://secure.lyra.com/vads-payment/
exec.refresh.a;jsessionid=CDb37C1CcfC5eA2BE82bDCA6?cacheId=913355311811206000040"
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 50 / 84

13.3. Updating an alias

In order to update a payment method, you must create a new token and add the existing alias to the
alias_to_update attribute of the POST TOKEN request.

Updating an alias using the payment page

Example:

Request

POST https://secure.lyra.com/marketplace/tokens/

Body

{
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "alias_to_update": "1144951ea7ab42989c97159b3dfc0382",
 "url_return": "http://www.my-website.com/",
 "buyer": {
 "type": "PRIVATE",
 "first_name": "Jean",
 "last_name": "Dupond",
 "email": "jean.dupond@lyra.fr",
 "phone_number": "1234",
 "reference": "Acheteur_1",
 "address": {
 "zipcode": "59259",
 "street_number": "37",
 "country": "FR",
 "street": "rue Marcel Philippe",
 "city": "Vignoux"
 }
 }
}

Response

{
 "token": "62a52e50-ce29-409a-9cec-9ea6ee36ab41",
 "payment_url": "https://secure.lyra.com/vads-payment/
exec.refresh.a;jsessionid=335D2aDb5eF8356Aed2cf3dF.vadpayment02inte01lbg?
cacheId=913355311811276000040"
}

In order to proceed to payment update, you must redirect the Buyer to the URL transmitted in payment_url.

You will receive a webhook notification at the end of the operation.

Updating an alias using embedded form

Example:

Request

POST https://secure.lyra.com/marketplace/tokens/embedded/

Body

{
 "marketplace": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "alias_to_update": "1144951ea7ab42989c97159b3dfc0382",
 "url_return": "http://www.my-website.com/",
 "buyer": {
 "type": "PRIVATE",
 "first_name": "Jean",
 "last_name": "Dupond",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 51 / 84

 "email": "jean.dupond@lyra.fr",
 "phone_number": "1234",
 "reference": "Acheteur_1",
 "address": {
 "zipcode": "59259",
 "street_number": "37",
 "country": "FR",
 "street": "rue Marcel Philippe",
 "city": "Vignoux"
 }
 }
}

Response

{
 "token": "62a52e50-ce29-409a-9cec-9ea6ee36ab41",
 "form_token":"fa0yfV2FQuR3aak1SwsgcuZg195eyJhbW91bnQiOjEwOTAwLCJjdXJyZW5jeSI6IkVVUiIsIm
 1vZGUiOiJURVNUIiwidmVyc2lvbiI6Mywib3JkZXJJZCI6IjVjNDk1N2E5LWNkOGEtNGJhZC1hMGNiLTgxMT
 ZiMWE3ZDdmNiIsInNob3BOYW1lIjoiTHlyYSBTTVMiLCJicmFuZFByaW9yaXR5IjpbIkJBTkNPTlRBQ1QiL
 CJDQiIsIkUtQ0FSVEVCTEVVRSIsIk1BU1RFUkNBUkQiLCVGQVVMVCJ9fX0a702"
}

In order to proceed to payment method update, the form_token must be inserted in the form (kr-form-
token) attribute).

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 52 / 84

13.4. Retrieving token details

One a token is created, it is possible to obtain its details by calling the token summary service.

GET /marketplaces/{marketplace}/alias/{alias}

Example:

Request

GET https://secure.lyra.com/marketplace/marketplaces/9537e049-8862-400a-ae8d-da2ec9ca6051/
alias/1144951ea7ab42989c97159b3dfc0382

Response

 {
 "brand": "CB",
 "expiry_month": "6",
 "expiry_year": "2023",
 "number": "497010XXXXXX0000",
 "first_name": "Jean",
 "last_name": "Dupond",
 "email": "jean.dupond@lyra.fr",
 "creation_date": "2019-01-21T16:01:19Z"
}

Another example response file with an IBAN type token:

{
 "brand": "SDD",
 "expiry_month": "5",
 "expiry_year": "2023",
 "number": "FR7630002005701234567890158_CRLYFRPPXXX",
 "first_name": "Jean",
 "last_name": "Dupond",
 "email": "jean.dupond@lyra.fr",
 "creation_date": "2020-05-12T14:24:13Z"
 }

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 53 / 84

14. PROCESSING THE RETURN TO THE MARKETPLACE

In order to redirect the buyer to the Marketplace, several attributes of the ORDER resource can be specified:

• "url_return" is the default return URL. You can use only this attribute if you do not want to
differentiate return cases. The following attributes override its value on a case-by-case basis.

• "url_success" is the URL called if the payment is successfully completed.

• "url_refused" is the URL called if the payment is refused.

• "url_cancel" is the URL called if the payment is canceled.

• "url_error" is the URL called if the payment results in an error.

By default, the payment data is sent to the return URL in an HTTP GET form (in the “query string”).

Example:

https://mymarketplace.com/return_to_shop?ref=1234&customer=ABCD

This behavior can be overridden via the "return_mode" attribute that can take the following values:

• 'NONE': no parameters are sent to the return URL.

• 'POST': the parameters are sent to the return URL in an HTTP POST form (if the return to the shop is
done in a non-https environment, the browser will display a security pop-up message to the buyer).

• 'GET' (by default): The return fields are transmitted to the return URL in an HTTP GET form (in the
“query string”).

Note: the return to the Marketplace should only allow you to show visual context to the buyer. Do not use
the received data for processing in the database or for checking the payment status.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 54 / 84

15. UPDATING AN ORDER

An order can be updated as long as its status is transient (CREATED or PENDING).

Therefore, the initial transaction must not be captured in the bank.

In case of an Order with the CREATED status, all values are editable, without limitations (See step 2 of
chapter Making a payment on page 25).

In case of an Order with the PENDING status, the PUT request is rejected if the two following values are
identical to the ones in the previous record:

• amount, determined by the total amount of the items.

The update request cancels and replaces all items of the initial Order.

• expected_capture_date in UTC in the YYYYMMDDHHMMSS format.

The comparison of expected_capture_date takes only the date into account.

For example, 20200101100000 (1 January 2020 at 10 a.m. UTC) equals to 20200101180000 (1 January
2020 at 18 p.m. UTC).

Furthermore:

• The amount cannot be higher than the initial amount of the order (i.e. value recorded in
initial_amount).

• The items must imperatively be transmitted in the PUT query (?expand=items).

Example of a PUT ORDER call:

PUT https://secure.lyra.com/marketplace/orders/515abac9-6cb2-4e21-8a25-b08d7e41e43c?
expand=items

{
 "marketplace": "ebfb36ab-2d30-4326-adb9-e16b0c9a89f3",
 "reference": "MKP BURO example",
 "description": "Office supplies order",
 "currency": "EUR",
 "url_return": "https://URLreturn.com",
 "expected_capture_date" : "202006205352",
 "items": [{
 "seller": "d0f80202-0676-4d8d-9247-f455f30aec1b",
 "reference": "commburo",
 "description": "commission BURO",
 "amount": 150,
 "is_commission": true
 },
 {
 "seller": "5d0ef88c-3345-4b33-948e-80e23d553b73",
 "reference": "STV1",
 "description": "Green pens",
 "amount": 1000,
 "is_commission": false
 },
 {
 "seller": "d0f80202-0676-4d8d-9247-f455f30aec1b",
 "reference": "del",
 "description": "Delivery",
 "amount": 500,
 "is_commission": false
 }
],
 "buyer": {
 "type": "PRIVATE",
 "email": "john.smith@buyer.com",
 "phone_number": "+33 (0)1 11 22 33 44",
 "reference": "ZhIsYM"
 },
 "shipping": {
 "address": {
 "zipcode": "59123",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 55 / 84

 "street_number": "37",
 "country": "FR",
 "street": "rue Marcel Philippe",
 "city": "Nantes"
 },
 "shipping_method": "RELAY_POINT"
 }
}

15.1. Updating an order paid in installments

It is possible to edit transactions after the payment as long as they are pending (with the PENDING status).

Only two values can be changed:

• The transaction amount (amount attribute),

• The capture date of the transaction (expected_capture_date attribute).

Notes:

• Similarly to a mono-transactional order, it is not possible to increase the transaction amount beyond its
initial amount, as recorded in the read-only initial_amount attribute.

• Items must imperatively be transmitted in the PUT query (?expand=items).

• It is possible to delete one (or several) transaction(s) (see below), but currently it is not possible to add
transactions.

Procedure:

Transaction update uses the same update command as for an order update (PUT ORDER), with two distinct
aspects:

1. The complete list of order transactions must be added in the PUT ORDER request body in a transactions
list, including each of the potentially edited trans_uuid, expected_capture_date and amount attributes.

For example:

{
 "marketplace": "2434c0a2-9d46-4e96-9553-1536c898625b",
 "reference": "MyMultitransactionOrder01",
 "description": "Order update.",
 "currency": "EUR",
 "url_return": "https://www.my-website.com/",
 "language": "en",
 "items": [
 {
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "reference": "0000001",
 "description": "Flat screen TV",
 "amount": 390000,
 "quantity": 1,
 "is_commission": false
 },
 {
 "seller": "72ccc2ff-b455-4653-847e-deb6fee99f8d",
 "reference": "0000002",
 "description": "Commission",
 "amount": 14755,
 "quantity": 1,
 "is_commission": true
 }
],
 "transactions": [
 {
 "trans_uuid": "c383739d12a6489badc3bb6847db84cc",
 "payment_scheme": "CB",
 "amount": 14755,
 "expected_capture_date": "201909185743"
 },
 {
 "trans_uuid": "d0c4d34249d540af87ff8df3a2fa314a",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 56 / 84

 "payment_scheme": "CB",
 "amount": 190000,
 "expected_capture_date": "201905175352"
 },
 {
 "trans_uuid": "8c5a6788b3334d368185b0a567dd7bcd",
 "payment_scheme": "CB",
 "amount": 200000,
 "expected_capture_date": "201904205352"
 }
],
 "buyer": {
 …
 }
}

2. “transactions” must be added in the “expand” URL attribute.

Therefore, you must submit a PUT ORDER resource to

https://secure.lyra.com/marketplace/orders/{order_uuid}?expand=items,transactions.

If the "transactions" value is not indicated, transaction updates cannot be taken into account.

During the update, the application checks if the item and transaction amounts match: normally, the total
amount of the item must be identical to the total amount of the transactions. Thus, a decrease in the item
amount should be followed by a manual decrease of the transaction amount.

Special case of transaction deletion

The decrease of the item amount may exceed the amount of one of the transactions. If you choose to
delete one of the transactions instead of decreasing the amount across all transactions, simply exclude it
from the list of transactions submitted in the update request. It will then be interpreted as canceled and
its status will change to CANCELLED.

Other remarks:

• The application returns an error if the update does not include any changes (concerning transactions,
items or order values).

• The new value of expected_capture_date must not be before the date and time of the update.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 57 / 84

16. CANCELING AN ORDER

An order can be canceled before and after the payment, as long as the latter has not been captured at the
bank, i.e. its status is:

• CREATED and before the order execution,

• PENDING.

If you try to cancel the payment between the time of order execution (while the status is still CREATED)
and the end of the payment process (i.e. the transition from CREATED to PENDING), you will receive the
following error:

{'Order': "This order has been executed and cannot be canceled until the end of the payment
 process"}

To cancel an order you must use the DELETE method on the ORDER resource.

DELETE /orders/{uuid}

Example:

DELETE https://secure.lyra.com/marketplace/orders/60c9dbf5-ff99-40fb-9fb6-a709005359f8

In case of success, the server responds by a HTTP 204 code (NO CONTENT).

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 58 / 84

17. REFUNDING A PAYMENT

To refund a payment, you must indicate which order it is linked to and which seller will take on the cost
of the refund.

To request a payment refund, follow the 2 following steps:

1. Create a refund request

2. Follow up the request

17.1. Creating a refund request

This step allows to create the refund request by using a POST request on the REFUND resource:

POST /refunds/

When a refund request is created, the following elements are controlled by the API and are subject to a
400 returned error code if they are not verified:

• The refund request must have the SUCCEEDED status.

• The seller that performs the refund must be one of the sellers of the refunded order.

• The refund must concern only one seller. If several sellers must refund a part of the same order, several
separate refund requests must be created: one for each seller. The only exception is if the second seller
of the request is the marketplace administrator.

Note: the refunded amount is not verified at this stage. The verification occurs later on, in scheduled process
chains, that is reflected in the change of the processing request status.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 59 / 84

Example of a call POST REFUND

In this example of the JSON content to post, a refund request of €130 is created, where €120 are refunded
by the seller and €10 are refunded by the marketplace manager:

Request

POST https://secure.lyra.com/marketplace/refunds/

Body

{
 "order": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "reference": "remb000045",
 "description": "Refund Mrs Smith 001",
 "currency": "EUR",
 "items": [{
 "seller": "dfc42a76-10b5-421a-91cd-c288c8265c92",
 "reference": "remb000045a",
 "description": "Phoneshop",
 "amount": 12000
 },
 {
 "seller":"975e2a43-7e72-438c-a2b2-b61347aa160c",
 "reference":"remb000045b",
 "description": "Manager",
 "amount": 1000
 }]
}

Example response of POST REFUND

The amount attribute in the response is calculated automatically based on the posted amounts of each
of the parts.

{
 "uuid": "16ad9da8-b9cb-11e4-97c6-b1229586dec7",
 "href":"https://secure.lyra.com/marketplace/refunds/16ad9da8-b9cb-11e4-97c6-b1229586dec7",
 "created_at": "2018-06-08T12:36:56.681073Z",
 "updated_at":"2018-06-08T12:39:46.859402Z",
 "order": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "reference": "remb000045",
 "description": "Refund Mrs Smith 001",
 "amount": 13000,
 "currency": "EUR",
 "status":"CREATED",
 "items": [{
 "seller": "dfc42a76-10b5-421a-91cd-c288c8265c92",
 "reference": "remb000045a",
 "description":"Phoneshop",
 "amount":12000,
 "is_commission": false
 },
 {
 "seller":"975e2a43-7e72-438c-a2b2-b61347aa160c",
 "reference": "remb000045b",
 "description": "Manager",
 "amount": 1000,
 "is_commission": false
 }]
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 60 / 84

17.2. Following up the refund request

Refunds are executed with regard to the available balance of the Merchant and the Marketplace. For
example, a refund of 100 euros with 80 euros charged to the Merchant and 20 euros charged to the
Marketplace will only be executed if:

• The available balance of the sub-merchant is greater than or equal to 80 euros.

• If the Marketplace balance is 20 euros or more.

To track the progress of the request, set up a webhook on the refund object and/or check the status of
the REFUND with a GET:

GET /refunds/{uuid}

Throughout its lifecycle, a refund request can go through the following statuses:

• CREATED : Refund request registered by the API, waiting to be processed.

• PENDING : Request sent to the processing chains and is being processed.

• SUCCEEDED : Refund processing successfully completed.

• FAILED : Refund request rejected, for example due to insufficient funds on the seller’s account.

• CANCELLED : Refund request canceled.

Example:

Request

GET https://secure.lyra.com/marketplace/refunds/16ad9da8-b9cb-11e4-97c6-b1229586dec7

Response

{
 "uuid": "16ad9da8-b9cb-11e4-97c6-b1229586dec7",
 "href": "https://secure.lyra.com/marketplace/refunds/16ad9da8-b9cb-11e4-97c6-b1229586dec7",
 "created_at": "2018-06-08T12:36:56.681073Z",
 "updated_at": "2018-06-08T12:51:21.241448Z",
 "order": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "reference": "remb000045",
 "description": "Remboursement Mme Lafont 001",
 "amount": 13000,
 "currency": "EUR",
 "status": "PENDING",
 "items":
 [
 {
 "seller": "dfc42a76-10b5-421a-91cd-c288c8265c92",
 "reference": "remb000045a",
 "description": "Phoneshop",
 "amount": 12000,
 "is_commission": false
 },
 {
 "seller": "975e2a43-7e72-438c-a2b2-b61347aa160c",
 "reference": "remb000045b",
 "description": "Gestionnaire",
 "amount": 1000
 "is_commission": false
 }
]
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 61 / 84

17.3. Modifying a refund request

A refund in progress can be modified within the limit of its initial amount as long as it has not been executed
(CREATED or PENDING status).

The modification is made using the UUID of the corresponding refund, via the resource:

PUT /refunds/{uuid}

Note: If the refund amount is unchanged, the server returns an HTTP 400 error.

Example:

Request

PUT https://secure.lyra.com/marketplace/refunds/16ad9da8-b9cb-11e4-97c6-b1229586dec7

Body

{
 "order": "9537e049-8862-400a-ae8d-da2ec9ca6051",
 "reference": "remb000045",
 "description": "Remboursement Mme Lafont 001",
 "currency": "EUR",
 "items": [
 {
 "seller": "dfc42a76-10b5-421a-91cd-c288c8265c92",

 "reference": "remb000045a",
 "description":"Phoneshop",
 "amount": 9450,
 "is_commission": false
 },
 {
 "seller":"975e2a43-7e72-438c-a2b2-b61347aa160c",

 "reference": "remb000045b",
 "description": "Gestionnaire",
 "amount": 900,
 "is_commission":false
 }
]
}

Response

{
 "uuid": "83402cc0-d969-443b-a72a-0f2fe9557879",
 "href": "https://secure.lyra.com/marketplace/refunds/83402cc0-d969-443b-a72a-0f2fe9557879",
 "created_at": "2019-06-11T09:31:59.659687Z",
 "updated_at": "2019-06-11T09:52:51.959406Z",
 "order": "67ca248e-99cd-4345-9795-5873bb6fd8f2",
 "reference": "remb000045",
 "description": "Remboursement Mme Lafont 001",
 "amount": 10905,
 "currency": "EUR",
 "status": "PENDING",
 "transaction": null,
 "items": [
 {
 "seller": "dfc42a76-10b5-421a-91cd-c288c8265c92",
 "refund": "83402cc0-d969-443b-a72a-0f2fe9557879",
 "item": "9f7c6d31-deff-4299-a3db-71bb214cae9e",
 "reference": "remb000045a",
 "description":"Phoneshop",
 "amount": 9450,
 "is_commission": false
 },
 {

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 62 / 84

 "seller":"975e2a43-7e72-438c-a2b2-b61347aa160c",
 "refund": "83402cc0-d969-443b-a72a-0f2fe9557879",
 "item": "7b99691b-0492-42ff-a819-302ac178fc7e",
 "reference": "remb000045b",
 "description": "Gestionnaire",
 "amount": 900,
 "is_commission": false
 }
]
}

17.4. Canceling a refund request

A refund in progress can be canceled as long as it has not been executed (CREATED or PENDING status).

DELETE /refunds/{uuid}

For example:

DELETE https://secure.lyra.com/marketplace/refunds/83402cc0-d969-443b-a72a-0f2fe9557879

In case of success, the server responds by a HTTP 204 code (NO CONTENT).

If the refund status does not allow cancellations, the server returns an HTTP 405 error.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 63 / 84

18. MANUALLY TRIGGERING ITEM PAYMENT

Normally, the payment of a commission item occurs automatically after the expiry of the delay for
withholding the seller’s funds in relation to the item.

The Marketplace may retain this payment in order to control when it is triggered.

This is the case for a service that spreads over a period of time. In this case, the client has made their
payment before the beginning of the service, but the seller will only receive the payment once the
Marketplace verifies that the service has been provided.

Then, the Marketplace:

• during the order creation, indicates the item(s) concerned by the withheld payment by setting the
hold_payment attribute to true:

 "items": [
 {
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "reference": "cruise12345",
 "description": "Boat cruise",
 "amount": 245000,
 "quantity": 1,
 "is_commission": false,
 "hold_payment": true
 },
 {
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "reference": "nauticalchart",
 "description": "Nautical chart - Martinique",
 "amount": 1250, "quantity": 1,
 "is_commission": false
 },
 {
 "seller": "72ccc2ff-b455-4653-847e-deb6fee99f8d",
 "reference": "cruise12345com",
 "description": "Commission on boat cruise",
 "amount": 16450,
 "quantity": 1,
 "is_commission": true
 }
]

• and, and the desired moment, unlocks the transfer by making a POST request (without a request body)
to the following address:

POST /items/{uuid}/activate

In case the operation is successful, the request is redirected (status_code = 302) to the item details, which
then indicates hold_payment: false.

Note:

• Payments can only be withheld for cart items of a Marketplace type seller (seller with
"is_marketPlace = true").

• Once the item payment has been activated, it cannot be withheld again.

• The hold_payment attribute is not required. On the contrary, it is recommended to omit it (or
to set it to “hold_payment : null”) for all items whose transfer must be handled automatically,
in order to distinguish the items that have been withheld from others.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 64 / 84

19. VIEWING MARKETPLACE CASHOUTS

19.1. Understanding cashouts

A cashout is a transfer from the sub-merchant’s holding account to their own bank account.

The operation is carried out automatically on D + d days after the payment, unless the Marketplace operator
has blocked it in order to activate it manually.

• D being the transaction capture delay.

• d being the “cashout delay” of the sub-vendor as it was configured by the Marketplace operator (see
the step Creating the seller in Marketing-Onboarding KYC).

For example, Mr Jones pays for an order today (D). If the capture takes place tomorrow (D+1) and if the Marketplace has
defined a cashout period of 2 days for the sub-merchant, the transfer will take place in 3 days.

Thus, its amount corresponds to the sum of transactions carried out (and captured) d days earlier minus
the refunds made (and captured) in the meantime.

For example, if the cashout delay is 2 days and 4 transactions of €250 have been captured the day before yesterday, including
an item refunded yesterday, the cashout amount for this day will be equal to: (4 - 1) x €250 = €750.

19.2. The cashout process

The transfer object mediates between the transaction and the cashout.

In case of a Marketplace:

• A transaction may concern several items of several different sub-vendors for a single buyer.

• A cashout aggregates several transactions of several different orders for a single vendor.

The transfer represents the share that an item occupies for a single transaction (knowing that an order
can itself be divided into several transactions).

It is entirely managed by the Marketplace API.

For example, a Marketplace gives Mr Jones the possibility to pay for the following 3 items in 3 installments. Transfers
represent the body of the table, while the first column contains the items and the other columns contain the transactions.

Transactions

1st installment 2nd installment 3rd installment
Total Items

Computer €740,88 €740,88 €518,23 €1,999,99

Large screen €926,10 €926,10 €647,79 €2,499,99Items

Sound bar €333,02 €333,02 €232,96 €899,00

Total Transactions €2,000,00 €2,000,00 €1,398,98 €5,398,98

In this order 9 transfers are generated using a proportional distribution rule. For example, the transfer corresponding to the
large screen in the first transaction equals €926,10 (= 2000,00 x 2499,99 / 5398,98). If you do the exact calculations, you will

notice that an item (here, the sound bar) and a transaction (the last one) are used to correct the rounding to the nearest cent.

In the global Marketplace process, the transfer is the smallest unit of an order, and the key to transforming
cash-in into cash-out. Since it is at the junction of the two operations, it is generated as soon as the
transaction is identified as captured (i.e. its status is SUCCEEDED). It then takes the CREATED status.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 65 / 84

https://docs.lyra.com/en/collect/marketplace/marketplace-onboarding/sitemap.html

Once the cash-out is captured, it changes to the SUCCEEDED status. This status is communicated to the
transfer associated with it, whose status also changes to SUCCEEDED.

NOTE
By definition, products sold by the Marketplace operator itself are not subject to cashouts. Therefore, only the Marketplace
sub-merchants are concerned by the transfers. As a result, transfers to the Marketplace (own sales and item commission)
retain their CREATED status throughout their lifetime.

19.3. Identifying the cashout and the associated orders

How to establish a connection between a seller’s cashout and an order made on the Marketplace using the
information returned by the Expert Back Office and that of the Marketplace API?

In the Merchant Back Office and the transaction statements, cashouts can be identified by their
capture_label.

For example, LC 22372582900407 for “Lyra Collect”. Another example: an association enters the name of the
Marketplace and a transfer number, such as MYMKPSLR88888444.

By locating the cashout in question in the list of cashouts, you can then interrogate the cashout details and
find the associated orders, items and refunds.

19.4. List of cashouts

The list of marketplace cashouts can be viewed at the following URL:

GET /cashouts/

The results are returned as follows:

{
 "count": 3,
 "next": null,
 "previous": null,
 "results": [
 {
 "href": "/marketplace/cashouts/749e668e-526d-41ec-8e7c-e5afc3d89ddc",
 "uuid": "749e668e-526d-41ec-8e7c-e5afc3d89ddc",
 "seller": "b646ea68-a145-4a5a-8a6f-55e8f68643dd",
 "seller_external_ref": "ref039412",
 "ref": "demoeYDPnZuC",
 "status": "CREATED",
 "amount": 1900,
 "currency": "EUR",
 "captured_at": "2019-04-04",
 "capture_label": "MYMKPSLR1012324"
 },
 {
 "href": "/marketplace/cashouts/b92d904a-8613-4368-98b7-96d75a623d97",
 "uuid": "b92d904a-8613-4368-98b7-96d75a623d97",
 "seller": "f8dcc611-bbaa-411a-8f28-ea2d6e4f49a8",
 "seller_external_ref": "ref09523",
 "ref": "demoeYDPnZuC",
 "status": "CREATED",
 "amount": 1900,
 "currency": "EUR",
 "captured_at": "2019-03-03",
 "capture_label":"MYMKPSLR1012325"
 },
 {
 "href": "/marketplace/cashouts/f9132b0b-8d42-4409-b3e1-c1c6d711688b",
 "uuid": "f9132b0b-8d42-4409-b3e1-c1c6d711688b",
 "seller":"4d20a9d4-0526-4474-b452-e936dc25418d",
 "seller_external_ref": "ref012345",
 "ref": "demoeYDPnZuC",
 "status": "CREATED",
 "amount": 1450,
 "currency": "EUR",
 "captured_at": "2019-01-01",

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 66 / 84

 "capture_label": "MYMKPSLR1012326"
 }
]
}

These results are sorted by capture date in descending order (attribute captured_at).

They are displayed in a paginated manner. There are 100 cashouts per page.

The "next" and "previous" links, when they are populated, allow to navigate between pages.

It is also possible to filter the results of this list by their capture date.

In this case, the capture_start_date and/or capture_end_date parameters must be defined as follows:

GET https://.../marketplace/cashouts/?capture_start_date=2019-02-01&capture_end_date=2019-03-31

GET https://.../marketplace/cashouts/?capture_start_date=2019-02-01

GET https://.../marketplace/cashouts/?capture_end_date=2019-01-01

If the capture_start_date parameter is specified but capture_end_date is not, the latter is set to the current
date (“today”).

On the other hand, if the capture_start_date parameter is omitted but capture_end_date is specified, the
selection will take the cashouts from the beginning until the specified date.

Note: Cashouts with an unspecified “captured_at” attribute are excluded from the results.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 67 / 84

19.5. Cashout details

The list of cashouts provides the URL for accessing the details of each of the cashouts, for example:

"/marketplace/cashouts/f9132b0b-8d42-4409-b3e1-c1c6d711688b".

A GET on the URL allows to retrieve information on the transfers and refund associated with the cashout
(including order and item details):

GET /cachouts/{uuid}

Example:

Request

GET https://secure.lyra.com/marketplace/cashouts/f9132b0b-8d42-4409-b3e1-c1c6d711688b

Response

{
 "href": "/marketplace/cashouts/f9132b0b-8d42-4409-b3e1-c1c6d711688b",
 "uuid": "f9132b0b-8d42-4409-b3e1-c1c6d711688b",
 "seller": "4d20a9d4-0526-4474-b452-e936dc25418d",
 "seller_external_ref": "ref012345",
 "ref": "demoeYDPnZuC",
 "status": "CREATED",
 "amount": 1450,
 "currency": "EUR",
 "captured_at": "2019-01-01",
 "capture_label": null,
 "transfers": [
 {
 "uuid": "0a5a8c7e-9c8b-4f16-8a29-0018c5aa20ef",
 "created_at": "2019-04-12T12:45:54.705798Z",
 "updated_at": "2019-05-06T12:15:09.942029Z",
 "item": {
 "uuid": "e8950426-f13c-4b18-8d27-17f2e6bbca8b",
 "ref": "demoeYDPnZuC",
 "desc": "Meal"
 },
 "order":
 {
 "uuid": "0bfa5ebf-cd09-4fd8-bb78-465d17854b55",
 "ref": "TestMKP",
 "desc": " Test marketplace "
 },
 "amount": 1900,
 "currency": "EUR"
 }
],
 "refunds": [
 {
 "uuid": "2760e1dd-252b-4109-816c-efbeafa2eaa2",
 "created_at": "2019-04-10T14:06:34.076796Z",
 "updated_at": "2019-04-10T14:06:35.719923Z",
 "order": {
 "uuid": "06f0fbd9-4a1f-4828-a014-aafda50df703",
 "ref": "TestMKP",
 "desc": "Test marketplace"
 },
 "item": {
 "uuid": "00f5a201-3d0c-49e7-9d05-0e706d04a385",
 "ref": "demoeYDPnZuC",
 "desc": "Meal"
 },
 "amount": 450,
 "currency": "EUR"
 }
]
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 68 / 84

20. GENERATING A CLIENT VIA OPENAPI

The Marketplace API uses Swagger (https://swagger.io/) to facilitate the generation of a ready-to-use
client in a wide variety of languages.

How does it work?

1. Retrieve the Marketplace API template via this address:

• In the YAML format: https://secure.lyra.com/marketplace/open_api.yaml

• In the JSON format: https://secure.lyra.com/marketplace/open_api.json

2. Copy the model in the left window of the Swagger editor (https://editor.swagger.io/).

You can safely ignore the error “Semantic error at paths./orders/.post.operationId Operations must
have unique operationIds”.

3. In the menu of the Swagger editor, click Generate Client and select the language of your choice (PHP,
Python, etc.).

4. After downloading and extracting the generated code, follow the instructions of the README.md file.

That’s it!

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 69 / 84

https://swagger.io/
https://secure.lyra.com/marketplace/open_api.yaml
https://secure.lyra.com/marketplace/open_api.json
https://editor.swagger.io/

21. DATA DICTIONARY

21.1. Address object

All the attributes of this object are required if at least one attribute is populated. Therefore, if no attributes
are populated, no attributes are required.

Name Description Format Mandatory Example

street_number Street number an..5 12

street Street name ans..255 market street

district Address supplement ans..127 central district

zipcode Zip code an..64 75015

city City an.128 London

state State ans..127 London

country Country a2 FR for France
GP for Guadeloupe
PF for French Polynesia

21.2. Alias object

Name Description Format Example

brand Card brand string CB

expiry_month Card expiry month
between 1 and 12

n..2 3

expiry_year Expiration year in 4
digits

n4 2023

number Masked card number string 497010XXXXXX0000

first_name Buyer's first name string John

last_name Buyer's last name string Dupond

email Buyer's e-mail
address

string jean.dupond@example.com

creation_date Token creation date see example 2020-04-21T16:01:19Z

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 70 / 84

21.3. Buyer object

Name Description Format Mandatory Example

reference buyer reference used in
Marketplace

an..63 X 000012

legal_name Company name an..63 Dupond & Co

title Buyer's title an..63 Ms

type Type of buyer enum X PRIVATE | COMPANY

first_name Buyer's first name an..63 Mary

last_name Buyer's last name an..63 SMITH

phone_number Buyer's phone number an..32 X 0612324565

email Buyer's e-mail address ans..150 X m.smith@site.com

address Buyer's postal address Address
object

21.4. Item object

Name Description Format Mandatory Example

uuid Unique identifier of the
service
Generated by Lyra
Collect

an..36 N/A 3ea5e574-e198-55d4-ba23-
f9405ec4226f

href URL to access this
resource
Generated by Lyra
Collect

see example N/A https://secure.lyra.com/
marketplace/items/3ea5e574-
e198-55d4-ba23-f9405ec4226f

created_at Date and time of
creation of the resource
Generated by Lyra
Collect

see example N/A 2015-01-17T09:39:54.948Z

updated_at Date and time of the
last modification of the
resource
Generated by Lyra
Collect

see example N/A 2015-01-17T09:39:54.948Z

seller UUID of the provider an..36 X 1ea5e574-e198-55d4-ba23-
f9405ec4226a

order UUID of the order an..36 8ea5e574-e198-55d4-ba23-
f9405ec4226c

reference Reference of the item an..32+"-" X 0000000181

description Description of the
service

an..255 Blablabla service

type Defines the type of the
article in the cart.

enum see table below.

amount If is_commission is
set to false: Service
amount.
If is_commission is set
to true: The amount
of the commission
is defined within the
order.

n..12 X 50000

commission_amount Commission amount
defined for the item.

n..12 500

is_commission Indicates that this item
is a commission.

enum true | false
false by default

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 71 / 84

Name Description Format Mandatory Example

status Status of the item
Generated by Lyra
Collect

an..10 N/A SUCCESSFUL

Type attribute values

Value Description

FOOD_AND_GROCERY Food and grocery

AUTOMOTIVE Cars / Moto

ENTERTAINMENT Entertainment / Culture

HOME_AND_GARDEN Home and gardening

HOME_APPLIANCE Household appliances

AUCTION_AND_GROUP_BUYING Auctions and group purchasing

FLOWERS_AND_GIFTS| Flowers and presents

COMPUTER_AND_SOFTWARE Computers and software

HEALTH_AND_BEAUTY Health and beauty

SERVICE_FOR_INDIVIDUAL Services for individuals

SERVICE_FOR_BUSINESS Services for companies

SPORTS Sports

CLOTHING_AND_ACCESSORIES Clothes and accessories

TRAVEL Travel

HOME_AUDIO_PHOTO_VIDEO Sound, image and video

TELEPHONY Telephony

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 72 / 84

21.5. Marketplace object

Name Description Format Example

uuid Unique identifier of the
Marketplace
Generated by Lyra Collect

an..36 6ea5e574-e198-55d4-ba23-f9405ec4226b

href URL to access this resource
Generated by Lyra Collect

see example https://secure.lyra.com/marketplace/
marketplaces/
6ea5e574-e198-55d4-ba23-f9405ec4226b

created_at Date and time of creation of
the resource
Generated by Lyra Collect

see example 2015-01-17T09:39:54.948Z

updated_at Date and time of the last
modification of the resource
Generated by Lyra Collect

see example 2015-01-17T09:39:54.948Z

reference Name of the Lyra Collect shop
created for the Marketplace

an..255 Ex: Marketplace Shop name

description Name of the Lyra Collect shop
created for the Marketplace

an..255 Ex: Marketplace Shop name

bic Bank code of the Marketplace
bank account

an..11 CMCIC1234

iban Account number of the
Marketplace bank account

an..34 FR1212341234123412341234

vads_key Identifier of the Lyra
Collect shop created for the
Marketplace
Generated by Lyra Collect

an..8 12345678

vads_cert Production certificate of the
Lyra Collect shop created for
the Marketplace
Generated by Lyra Collect

an..16 123456789123456789

webhook_url Notification URL of the
Marketplace

an..1024 http://marketplace.com/
page_traitement_notification.php

status Status of the Marketplace
resource
Generated by Lyra Collect

an..10 ACTIVE

links Links to the Sellers and Orders
resources of the Marketplace
Generated by Lyra Collect

see example
{
 "sellers": {
 "href":
 "https://secure.lyra.com/
marketplace/
marketplaces/6ea5e574-e198-55d4-
ba23-f9405ec4226b/sellers"
 },
 "orders": {
 "href":
 "https://secure.lyra.com/
marketplace/
marketplaces/6ea5e574-e198-55d4-
ba23-f9405ec4226b/orders"
 }
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 73 / 84

21.6. Order object

Name Description Format Mandatory Example

uuid Unique identifier of the order
Generated by Lyra Collect

an..36 N/A 8ea5e574-e198-55d4-ba23-f9405ec4226c

href URL to access this resource
Generated by Lyra Collect

see
example

N/A https://secure.lyra.com/marketplace/
orders/
8ea5e574-e198-55d4-ba23-f9405ec4226c

created_at Date and time of resource
creation
Generated by Lyra Collect

see
example

N/A 2015-01-17T09:39:54.948Z

updated_at Date and time of the last
resource modification
Generated by Lyra Collect

see
example

N/A 2015-01-17T09:39:54.948Z

marketplace UUID of the Marketplace an..36 X 6ea5e574-e198-55d4-ba23-f9405ec4226b

reference Order reference an..32+"-" X CMD-123456

description Order description an..255 Order 123456 - Margaritas x2 + 4 seasons
x1

vads_transaction_id Transaction identifier Lyra
Collect

n..6 N/A 379
Note: Field deprecated here.

vads_transaction_date Date and time of the Lyra
Collect transaction in the
YYYYMMDDHHMMSS format

an..14 N/A 20150320094512
Note: Field deprecated here.

buyer Buyer details Buyer
object

X

alias Token ID in the gateway ans..64 1144951ea7ab42989c97159b3dfc0382

shipping Shipping details Shipping
object

amount Order total amount, expressed
in the smallest currency unit.

n..12 N/A 50000 for EUR 500.

currency Currency of the order (ISO
4217)

a3 X EUR

language Display language of the
payment pages (ISO 639-1)

a2 FR

capture_delay Indicates the delay (in days)
before the capture at the bank

Positive
integer

between
0 and 6

No. Only
available

in creation
(POST)

3

expected_capture_date Expected capture date, in
UTC timezone, in the
YYYYMMDDHHMMSS format.

Date No. Only
available
in update

(PUT)

20180716083000

status Order status
Generated by Lyra Collect

an..10 N/A PENDING

webhook_result Result of the notification sent
to the Marketplace
Generated by Lyra Collect

n..3 N/A 200

url_return Default buyer return URL on
the Marketplace website.

an..512 http://www.sitemarketplace.com/
url_de_retour.html

url_success Buyer return URL on the
Marketplace website after
a successfully completed
payment.

an..200 http://www.sitemarketplace.com/
url_success.html

url_refused Buyer return URL on the
Marketplace website after a
refused payment.

an..200 http://www.sitemarketplace.com/
url_refused.html

url_cancel Buyer return URL on the
Marketplace website after a
canceled payment.

an..200 http://www.sitemarketplace.com/
url_cancel.html

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 74 / 84

Name Description Format Mandatory Example

url_error Buyer return URL on the
Marketplace website after a
payment that resulted in an
error.

an..200 http://www.sitemarketplace.com/
url_error.html

return_mode Data transmission method
used when returning to the
merchant website.

a4 POST

links Links to the Items resources
Generated by Lyra Collect

see
example

N/A
{
 "items": {
 "href":
 "https://secure.lyra.com/
marketplace/orders/8ea5e574-
e198-55d4-
ba23-f9405ec4226c/items"
 }
}

persist_url Persistent payment link url N/A "https://secure.lyra.com/marketplace/t/
ioeD1uRP"

expiry_date Expiration date of the
persistent link

see
example

N/A "2021-02-15T15:37:47.632009Z"

form_token Token of the embedded form an Example:
ffa0yfV2FQuR3aak1SwsgcuZg195eyJhbW9
OjEwOTAwLCJjdXJyZW5jeSI6IkVVUiIsIm1v
UiOiJURVNUIiwidmVyc2lvbiI6Mywib3JkZXJJ
I6IjVjNDk1N2E5LWNkOGEtNGJhZC1hMGN
gxMTZiMWE3ZDdmNiIsInNob3BOYW1lIjoi
yYSBTTVMiLCJicmFuZFByaW9yaXR5IjpbIkJ
TkNPTlRBQ1QiLCJDQiIsIkUtQ0FSVEVCTEVV
RSIsIk1BU1RFUkNBUkQiLCVGQVVMVCJ9fX
0a702

21.7. Order voucher object

Name Description Format Mandatory Example

contract_type Contract (MID) type “CONECS” or
“CVCONNECT”

X “CONECS”

eligible_amount Amount eligible in the smallest currency
unit

n..12 Mandatory if
contract_type =
"CONECS"

1900

21.8. Refund object

Name Description Format Mandatory

order Identifier of the order to refund an..36 X

reference Technical reference of the refund an..32 X

status Status of refund an..10 X

description Description of the refund ans..255

currency Currency of the order (ISO 4217)
Only the EUR value is authorized

a3 X

items List of refund parts to be made (by seller) enum X

items.seller Identifier of the seller who must take on this part of
the refund

an..36 X

items.reference Technical reference an..32 X

items.description Description ans..255

items.amount Amount of the part to be refunded by the seller n..12 X

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 75 / 84

Name Description Format Mandatory

items.item Reference of the item being refunded within the
original order

an..50

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 76 / 84

21.9. Seller object

Name Description Format Example

uuid Unique item identifier
of the provider
Generated by Lyra
Collect

an..36 1ea5e574-e198-55d4-ba23-f9405ec4226a

href URL to access this
resource
Generated by Lyra
Collect

see example https://secure.lyra.com/marketplace/
sellers/1ea5e574-e198-55d4-ba23-
f9405ec4226a

created_at Date and time of
creation of the resource
Generated by Lyra
Collect

see example 2015-01-17T09:39:54.948Z

updated_at Date and time of the
last modification of the
resource
Generated by Lyra
Collect

see example 2015-01-17T09:39:54.948Z

marketplace UUID of the
Marketplace

an..36 6ea5e574-e198-55d4-ba23-f9405ec4226b

reference Identifier of the
provider's Lyra Collect
shop

an..255 87654321

description Identifier of the
provider's Lyra Collect
shop

an..255 Provider's shop

bic Bank code of the
provider's bank account

an..11 CMCIC1234

iban Account number of the
provider's bank account

an..34 FR1212341234123412341234

is_marketplace_seller allows to identify the
marketplace seller. In
the order, commission
items (is_commission =
true) must be linked
to this seller. This
seller is automatically
created during the
marketplace's creation.

boolean true | false

status Status of the
Marketplace resource
Generated by Lyra
Collect

an.10 ACTIVE

links Links to the Items
resources of the
provider
Generated by Lyra
Collect

see example
{
 "items": {
 "href":
 "https://secure.lyra.com/
marketplace/
sellers/1ea5e574-e198-55d4-ba23-
f9405ec4226a/items"
 },
}

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 77 / 84

21.10. Shipping object

Name Description Format Mandatory Example

delivery_company_nametransporter's name ans..128

shipping_speed shipping mode enum STANDARD | EXPRESS | PRIORITY

shipping_method shipping method enum X RECLAIM_IN_SHOP | RELAY_POINT |
RECLAIM_IN_STATION |
PACKAGE_DELIVERY_COMPANY |
ETICKET

shipping_delay speed related to
delivery mode when
shipping_speed =
PRIORITY

enum INFERIOR_EQUALS | SUPERIOR |
IMMEDIATE | ALWAYS

type type of recipient enum PRIVATE | COMPANY

legal_name company name an..63 Dupond & Cie

name recipient's name

first_name buyer's first name an..63 Mary

last_name buyer's last name an..63 SMITH

phone_number buyer's phone
number

an..32 0612324565

address buyer's postal
address

Address object

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 78 / 84

21.11. Token object

Name Description Format Mandatory Example

uuid Unique identifier
of the order
Generated by Lyra
Collect

an..36 N/A c730def9-e171-4f4f-92de-b7f09ed74b8d

created_at Date and time of
creation of the
resource
Generated by Lyra
Collect

see
example

N/A 2018-11-27T13:53:48.461191Z

updated_at Date and time
of the last
modification of the
resource
Generated by Lyra
Collect

see
example

N/A 2018-11-27T13:53:48.461191Z

marketplace UUID of the
Marketplace

an..36 N/A 2434c0a2-9d46-4e96-9553-1536c898625b

buyer Buyer details Buyer
object

X

language Display language of
the payment pages
(ISO 639-1)

a2 FR

url_return Buyer's return
URL on the
Marketplace
website

an..512 http://www.my-website.com

status Request status
Generated by Lyra
Collect

an..10 N/A CREATED

alias Token ID in the
gateway

ans..64 1144951ea7ab42989c97159b3dfc0382

alias_to_update Token ID to be
modified in the
gateway

ans..64 1144951ea7ab42989c97159b3dfc0382

payment_url URL to give to
the buyer for the
creation of the
token

ans..255

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 79 / 84

21.12. Transaction object

Name Description Format Mandatory Example

trans_uuid transaction identifier ans..32 X 03934e6df4ec4f8ea0fe491e95fbc619

order Identifier of the associated
order

X 33ec0e5a-f25c-4bb1-8115-e54c70e30f16

sequence_number Transaction index that can be
useful in case of installment
payment.

n..12 X 1 for the first transaction, 2 for the second
one, etc.

paid_at Payment date. Date No 2020-06-15T13:16:22Z

auto_code Authorization return code. a..2 No See the list of values below.

payment_scheme Description of the used
payment method.

an..16 N/A CB

amount Transaction amount expressed
in the smallest currency unit.

n..12 X 10450 for EUR 104.50

initial_amount Transaction amount recorded
upon the authorization
request expressed in the
smallest currency unit.

n..12 No 10450 for EUR 104.50

expected_capture_date Expected capture date, in
UTC timezone, in the
YYYYMMDDHHMMSS format.

Date X 20200615151622

status Transaction status.
Generated by Lyra Collect

an..10 No TO_VALIDATE

links Links to the transaction
resources.
Generated by Lyra Collect

see
example

No "links": { "transfers": { "href": "https://
secure.lyra.com/marketplace/
transactions/03a0f95fbc619/transfers" }
}

created_at Date and time of resource
creation.

see
example

No 2020-06-15T13:16:49.223042Z

updated_at Date and time of the last
resource update.

see
example

No

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 80 / 84

List of authorization return codes (auto_code):

Codes returned by Amex Global acquirer:

Code Description

000 Approved

001 Approved with an ID

002 Partial approval (Prepaid Cards only)

100 Declined

101 Expired card / Invalid expiry date

106 Exceeded PIN entry attempts

107 Please Call Issuer

109 Invalid merchant

110 Incorrect Transaction Amount

111 Invalid account / Invalid MICR (Travelers Cheque)

115 Requested function not supported

117 Invalid PIN

119 Cardholder not enrolled / not allowed

122 Invalid card security code (a.k.a., CID, 4DBC, 4CSC)

125 Invalid effective date

130 Declined

181 Format error

183 Invalid currency code

187 Deny - New card issued

189 Deny - Account canceled

200 Deny - Pick up card

900 Accepted - ATC Synchronization

909 System malfunction (cryptographic error)

912 Issuer not available

Codes returned by the CB and Paylib network:

Value Description Value Description

00 Approved or successfully processed transaction 43 Stolen card

02 Contact the card issuer 51 Insufficient balance or exceeded credit limit

03 Invalid acceptor 54 Expired card

04 Keep the card 55 Incorrect secret code

05 Do not honor 56 Card absent from the file

07 Keep the card, special conditions 57 Transaction not allowed for this cardholder

08 Confirm after identification 58 Transaction not allowed for this cardholder

12 Incorrect Transaction Code 59 Suspected fraud

13 Incorrect Transaction Amount 60 The acceptor of the card must contact the acquirer

14 Invalid cardholder number 61 Withdrawal limit exceeded

15 Unknown issuer 63 Security rules unfulfilled

17 Canceled by the buyer 68 Response not received or received too late

19 Retry later 75 Number of attempts for entering the secret code
has been exceeded

20 Incorrect response (error on the domain server) 76 The cardholder is already blocked, the previous
record has been saved

24 Unsupported file update 80 Contactless payment is not accepted by the issuer

25 Unable to locate the registered elements in the file 81 Unsecured payment is not accepted by the issuer

26 Duplicate registration, the previous record has
been replaced

82 Revocation of recurring payment for the card of a
specific Merchant or for the MCC and the card

27 File update edit error 83 Revocation of all recurring payments for the card

28 Denied access to file 90 Temporary shutdown

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 81 / 84

Value Description Value Description

29 Unable to update 91 Unable to reach the card issuer

30 Format error 94 Duplicate transaction

31 Unknown acquirer company ID 96 System malfunction

33 Expired card 97 Overall monitoring timeout

34 Suspected fraud 98 Server not available, new network route requested

38 Expired card 99 Initiator domain incident

41 Lost card

Codes returned by the GICC network:

Code Description

0 Approved or completed successfully

2 Call Voice-authorization number; Initialization Data

3 Invalid merchant number

4 Retain card

5 Authorization declined

10 Partial approval

12 Invalid transaction

13 Invalid amount

14 Invalid card

21 No action taken

30 Format Error

33 Card expired

34 Suspicion of manipulation

40 Requested function not supported

43 Stolen card, pick up

55 Incorrect personal identification number

56 Card not in authorizer's database

58 Terminal ID unknown

62 Restricted card

78 Stop payment order

79 Revocation of authorization order

80 Amount no longer available

81 Message-flow error

91 Card issuer temporarily not reachable

92 The card type is not processed by the authorization center

96 Processing temporarily not possible

97 Security breach - MAC check indicates error condition

98 Date and time not plausible

99 Error in PAC encryption detected

Codes returned by the PayPal network:

Code Description

0 Transaction accepted

10001 Internal error

10002 Restricted Account

10009 Transaction refused for one of the following reasons:

• The partial refund amount must be less than or equal to the original transaction amount.

• The partial refund must be in the same currency as the original transaction.

• This transaction has already been fully refunded.

• The time limit (60 days) for performing a refund for this transaction has been exceeded.

10422 Customer must choose new funding sources. The customer must return to PayPal to select new funding sources.

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 82 / 84

Code Description

10486 This transaction couldn't be completed. Please redirect your customer to PayPal.

13113 The Buyer cannot pay with PayPal for this transaction. Inform the buyer that PayPal declined the transaction and
to contact PayPal Customer Service.

Codes returned by Edenred Belgium acquirer

Code Description

0 Payment accepted

1 Partially approved
The buyer has been prompted to pay the remaining amount with another payment method.

5 Payment refused

102 Invalid card number

103 Retailer not authorized

104 Blocked card

105 Insufficient funds

106 Expired card

107 Incorrect pin

108 Unreferenced error

114 The card has not yet been activated

115 Balance over the max limit

116 Invalid currency

117 Daily spend limit exceeded

118 Weekly spend limit exceeded

119 Monthly spend limit exceeded

120 Yearly spend limit exceeded

121 Wrong PIN was provided too many times

122 Transaction amount too small

123 Transaction amount too big

124 Account blocked

125 Transaction amount limit exceeded

126 Transaction velocity limit exceeded (Spend limit exceeded)

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 83 / 84

https://www.paypal.com/contactus

22. OBTAINING HELP

Looking for help? Check our FAQ on our website

https://docs.lyra.com/en/collect/faq/sitemap.html

For any technical inquiries or if you need any help, contact technical support.

To help us process your demands, you will be asked to communicate your customer code (e.g.: CLXXXXX,
MKXXXXX or AGXXXXX).

This information is available in the Merchant Back Office (top of menu).

Marketplace Web Service REST API - Document version 2.4.2

All rights reserved - 84 / 84

https://docs.lyra.com/en/collect/faq/sitemap.html
https://www.lyra.com/fr/support/

	Contents
	1. HISTORY OF THE DOCUMENT
	2. MARKETPLACE GLOSSARY
	3. PRESENTATION OF THE MARKETPLACE
	Commission principle
	Calculation of minimum commission
	Submission methods

	4. PRESENTATION OF THE WEB SERVICES
	4.1. Main payment stages
	4.2. Web service resources
	4.3. Prerequisites

	5. UNDERSTANDING THE MARKETPLACE PAYMENT FLOW
	6. IDENTIFYING YOURSELF DURING DATA EXCHANGE
	7. UNDERSTANDING MARKETPLACE DATA
	8. UNDERSTANDING THE RETURN CODES OF THE HTTP STATUS SENT VIA WEB SERVICE
	9. VIEWING THE SUB-MERCHANTS REGISTERED ON THE MARKETPLACE
	10. USING WEBHOOKS
	10.1. Defining the webhook address
	10.2. Accessing the webhooks defined and available on your marketplace
	10.3. Registering, modifying or deleting a webhook
	10.3.1. Adding a webhook
	10.3.2. Modifying a webhook
	10.3.3. Deleting a webhook

	11. MAKING A PAYMENT
	11.1. Installment payment
	11.1.1. Regular payments: MULTI
	11.1.2. Custom schedule: MULTI_EXT

	11.2. Payment with capture delay
	11.3. Payment with token creation
	11.4. Payment by token
	11.5. Payment initiated by the Merchant
	11.6. Manual validation payment
	11.7. Payment by voucher
	11.7.1. Prerequisites
	11.7.2. Creating and modifying the order
	11.7.3. Selecting MIDs upon order execution
	11.7.4. After the payment
	11.7.5. Modification and cancellation

	11.8. Payment using a persistent link
	11.8.1. Generating the link
	11.8.2. Adjusting the expiration date

	12. ANALYZING THE PAYMENT RESULT
	13. TOKEN MANAGEMENT
	13.1. Creating a token
	13.2. Analyzing the result of a token request
	13.3. Updating an alias
	13.4. Retrieving token details

	14. PROCESSING THE RETURN TO THE MARKETPLACE
	15. UPDATING AN ORDER
	15.1. Updating an order paid in installments

	16. CANCELING AN ORDER
	17. REFUNDING A PAYMENT
	17.1. Creating a refund request
	17.2. Following up the refund request
	17.3. Modifying a refund request
	17.4. Canceling a refund request

	18. MANUALLY TRIGGERING ITEM PAYMENT
	19. VIEWING MARKETPLACE CASHOUTS
	19.1. Understanding cashouts
	19.2. The cashout process
	19.3. Identifying the cashout and the associated orders
	19.4. List of cashouts
	19.5. Cashout details

	20. GENERATING A CLIENT VIA OPENAPI
	21. DATA DICTIONARY
	21.1. Address object
	21.2. Alias object
	21.3. Buyer object
	21.4. Item object
	21.5. Marketplace object
	21.6. Order object
	21.7. Order voucher object
	21.8. Refund object
	21.9. Seller object
	21.10. Shipping object
	21.11. Token object
	21.12. Transaction object

	22. OBTAINING HELP

